• 제목/요약/키워드: Fiber shape

Search Result 840, Processing Time 0.038 seconds

An Experimental Study on the Vibrational Characteristics of the Rotor Blade with Fiber Reinforced Plastics (복합재료 FRP로 제작된 Rotor Blade 진동특성 분석에 관한 실험적 연구)

  • Paik, J.S.;Lee, K.S.;Park, J.V.;Lee, J.T.;Son, C.Y.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1232-1240
    • /
    • 2005
  • The purpose of this paper is that investigates the dynamic behavior characteristic of W.T.S (wind turbine system) and carries out the evaluation analysis during operating W.T.S. To investigate the dynamic behavior characteristic of W.T.S, the experiments to measure vibration of the blade from the attached accelerometer on the flap and edge section of the blade that is one of the most important elements of dynamic characteristic of W.T.S are performed. Natural frequency and mode shape are calculated with commercial program ( ANSYS) using the measured vibration acceleration that receives the signal with F.F.T Analyzer from the accelerometer For validation of these experiments, the finite element analysis is performed with commercial F.E.M program (ANSYS) on the basis of the natural frequency and mode shape. The results indicate that experimental values have good agreements with the finite element analysis.

A Study on Changes to the Upper Body Shape of Elderly Japanese Women -Analysis of the Transverse Plane by Age Group-

  • Oh, Hee-Kyoung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.42 no.4
    • /
    • pp.726-736
    • /
    • 2018
  • This study determined how the upper body shape of elderly women changes with age in order to improve the fit of clothing worn by elderly women. Thirty-nine healthy elderly Japanese women had their body measurements taken by measuring tape and a 3D body line scanner (Hamamatsu Model #C9036-02) from December 2011 to March 2012 at a university in Tokyo. It was found that the shoulder line shortens in women between the ages of 70 and 74, but that the upper arm lengthens in women between the ages of 75 and 79. It was also found that the upper part of the scapular area rolls forward in women between the ages of 70 and 74, and that the point of the back which protrudes the most-the lower scapular area-rolls forward in women between the ages of 75 and 79. The results will be helpful for designing clothes for elderly women as their body shape changes with age.

Fabrication and Interface Properties of TiNi/6061Al Composite (TiNi 형상기억합금을 이용한 복합재료의 제조 및 계면 특성)

  • Kim, Sun-Guk;Lee, Jun-Hui
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.419-427
    • /
    • 1999
  • TiNi shape memory alloy was shape memory heat-treated and investigated its mechanical properties with the variation of prestrain. Also 6061 Al matrix composites with TiNi shape memory alloy fiber as reinforcement have been fabricated by Permanent Mold Casting to investigate the microstructures and interface properties. Yield stress of TiNi wire was the most high in the case of before heat-treatment and then decreased as increasing heat-treatment time. In each heat-treatment condition, the yield stress of TiNi wire was not changed with increasing the amount of prestrain. The interface bonding of TiNi/6061Al composite was fine. There was a 2$\mu\textrm{m}$ thickness of diffusion reaction layer at the interface. We could find out that this diffusion reaction layer was made by the mutual diffusion. The diffusion rate from Al base to TiNi wire was faster than that of reverse diffusion and the amount of the diffusion was also a little more than that of reverse.

  • PDF

Fabrication and AE Characteristics of TiNi/ A16061 Shape Memory Alloy Composite

  • Park, Young-Chul;Lee, Jin-Kyung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.453-459
    • /
    • 2004
  • TiNi/ Al6061 shape memory alloy (SMA) composite was fabricated by hot press method to investigate the microstructure and mechanical properties. Interface bonding between TiNi reinforcement and A1 matrix was observed by using SEM and EDS. Pre-strain was imposed to generate compressive residual stress inside composite. A tensile test for specimen, which under-went pre-strain, was performed at high temperature to evaluate the variation of strength and the effect of pre-strain. It was shown that interfacial reactions occurred at the bonding between matrix and fiber, creating two inter-metallic layers. And yield stress increased with the amount of pre-strain. Acoustic Emission technique was also used to nondestructively clarify the microscopic damage behavior at high temperature and the effect of pre-strain of TiNi/ Al6061 SMA composite.

Study on Strengthening Effect and Failure Behavior of CFS Strengthened High Strength RC Columns after Cross -sectional Shape Modification (4각기둥의 단면형상 변형 후 CFS로 보강한 고강도 철근 콘크리트 기둥의 보강효과 및 파괴거동 연구)

  • Jun Kyung-Suk;Kim Jang-Ho;Park Seok-Kyun;Kim Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.259-262
    • /
    • 2005
  • Numerous studies showed that safety and serviceability of many concrete infrastructures and buildings built in 1970's have capacity less than their design capacities and thereby require immediate retrofitting. Currently, these aged concrete structure are being repaired using many repair and strengthening methods developed in the past. Therefore, in this study, a repairing and strengthening method for retrofitting high strength concrete columns that can effectively improve the performance of high strength concrete columns is developed. The square high strength concrete column's cross-sectional shape is modified to octagonal shape by attaching precast members on the surface of the column. Then, the octagonal column surface is wrapped using Carbon Fiber Sheets (CFS). The method allowed the maximum usage of confinement effect of externally wrapped CFS, which resulted in improved strength and ductility of repaired high strength concrete columns.

  • PDF

Soft Morphing Motion of Flytrap Robot Using Bending Propagating Actuation (밴딩 전파 구동을 이용한 파리지옥 로봇의 소프트 모핑 동작)

  • Kim, Seung-Won;Koh, Je-Sung;Cho, Maeng-Hyo;Cho, Kyu-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.168-174
    • /
    • 2012
  • This paper presents a bending propagating actuation using SMA (Shape Memory Alloy) spring for an effective shape transition of a flytrap-inspired soft morphing structure. The flytrap-inspired soft morphing structure is made from unsymmetric CFRP (Carbon Fiber Reinforced Prepreg) structure which shows bi-stability and snap-through phenomenon. For a thin and large curved bistable CFRP structure, SMA spring is more acceptable than SMA wire and piezoelectric actuator which used in previous investigations. A bending propagating actuation is proposed which can induce snap-through of the bi-stable CFRP structure effectively. From this research, effective shape transition of soft morphing structure is possible.

Development of Load Cell Using Fiber Brags Grating Sensors and Differential Method for Structural Health Monitoring (구조 건전성 모니터링을 위한 광섬유 브래그 격자 센서와 차동법을 적용한 로드셀 개발)

  • Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.299-307
    • /
    • 2009
  • Emerging fiber optic sensor technologies have shown great potential to overcome the difficulties associated with conventional sensors. Fiber optic sensors are immune to EM noise and electric shock and thus can be used in explosion-prone areas. Several kinds of fiber optic sensors have been developed over the last two decades to take advantage of these merits. There have also been many field applications of fiber optic sensors for structural health monitoring as NDT/HDE. However, very few sensors, particularly a load cell have been successfully commercialized. This Paper Presents a load cell using fiber Bra99 gra1ing (FBG) sensors. The shape of the load cell is a link type, and three FBG sensors are used for measuring strains at three different points. Especially, these strains are processed with a differential method in order to exclude common mode noise such as temperature. Moreover, the sensitivity, the linearity and the resolution of the load cell were successfully verified from the experiment of tension test.

Evaluation of the Physical Properties of Kraft Pulps Made from Major Agricultural Byproducts (주요 농업부산물로 제조한 크라프트 펄프의 물리적 특성 평가)

  • Lee, Ji-Young;Lim, Gi-Baek;Kim, Sun-Young;Park, Jong-Hea;Kim, Chul-Hwan;Hur, Young-Jun;Kim, Young-Hoon;Kim, Yeon-Oh;Lee, Se-Ran
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.3
    • /
    • pp.50-57
    • /
    • 2014
  • In this study, we investigated the physical properties of kraft pulps made from rice husk, peanut husk and garlic stems. These agricultural byproducts were collected individually, and then various pulps were manufactured from them by controlling active alkali, sulfidity, reaction time and the liquor ratio in the kraft pulping process in order to analyze the applicability of these agricultural byproducts as raw materials for kraft pulps. After kraft pulping, we measured yield, flake content, fiber length, fiber width and freeness of pulps, and the fiber shapes of the pulps were observed by using an optical microscope. When the higher active alkali, longer reaction time and lower liquor ratio were applied in kraft pulping process, reject content decreased and fiber yield increased. The pulp from garlic stems had the longest fiber length and that from rice husk showed the highest intial freeness. All of the pulps from agricultural byproducts showed higher initial freeness, shorter fiber length and the similar fiber width compared to OCC, BCTMP and hardwood BKP. The fibers of the pulps made from agricultural byproducts showed a similar shape to those of commercial pulps. It was concluded that these agricultural byproducts had a potential as raw materials to produce an alternative pulp to the commercial pulps.

Effects of Rice Bran Dietary Fiber Extract on Gelatinization and Retrogradation of Wheat Flour (미강 식이섬유 추출물이 밀가루의 호화 및 노화에 미치는 영향)

  • Kim, Young-Soo;Ha, Tae-Youl;Lee, Sang-Hyo;Lee, Hyun-Yu
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.464-469
    • /
    • 1997
  • Rapid visco-analyzer (RVA) and differential scanning calorimetry (DSC) were used to study the effect of rice bran dietary fiber extract on gelatinization and retrogradation of wheat flour. The addition of rice bran dietary fiber extracts from various heat treated bran into wheat flour caused to increase the pasting temperature, peak viscosity and final viscosity of RVA measurements. For gelatinization measured with DSC, mixtures of wheat flour and rice bran dietary fiber extract had slightly higher To (onset temperature) and Tp (peak temperature) values than those of control (wheat flour), and wheat flour/defatted rice bran dietary fiber extract mixture had the lowest enthalpy value. In comparison with gelatinization, the retrogradation endotherm of mixtures stored at $4^{\circ}C$ up to 4 weeks occurred at about $20^{\circ}C$ lower temperatures than gelatinization endotherm with broader shape and well-defined thermograms with storage time. The retrogradation of wheat flour was retarded greatly by addition of rice bran dietary fiber extract, and there was no big difference between 5% and 10% additions.

  • PDF

A Study on Microfailure Mechanism of Single-Fiber Composites using Tensile/Compressive Broutman Fragmentation Techniques and Acoustic Emission (인장/압축 Broutman Fragmentation시험법과 음향방출을 이용한 단섬유 복합재료의 미세파괴 메커니즘의 연구)

  • Park, Joung-Man;Kim, Jin-Won;Yoon, Dong-Jin
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.54-66
    • /
    • 2000
  • Interfacial and microfailure properties of carbon fiber/epoxy matrix composites were evaluated using both tensile fragmentation and compressive Broutman tests with an aid of acoustic emission (AE) monitoring. A polymeric maleic anhydride coupling agent and a monomeric amino-silane coupling agent were used via the electrodeposition (ED) and the dipping applications, respectively. Both coupling agents exhibited significant improvements in interfacial shear strength (IFSS) compared to the untreated case under tensile and compressive tests. The typical microfailure modes including fiber break of cone-shape, matrix cracking, and partial interlayer failure were observed during tensile test, whereas the diagonal slippage in fiber ends was observed under compressive test. For both loading types, fiber breaks occurred around just before and after yielding point. In both the untreated and treated cases AE amplitudes were separately distributed for the tensile testing, whereas they were closely distributed for the compressive tests. It is because of the difference in failure energies of carbon fiber between tensile and compressive loading. The maximum AE voltage for the waveform of carbon or basalt fiber breakages under tensile tests exhibited much larger than those under compressive tests, which can provide the difference in the failure energy of the individual failure processes.

  • PDF