• Title/Summary/Keyword: Fiber reinforced Composites

Search Result 1,363, Processing Time 0.031 seconds

Mechanical Behaviors of CFRP Laminate Composites Reinforced with Aluminum Oxide Powder

  • Kwon, Oh-Heon;Yun, Yu-Seong;Ryu, Yeong-Rok
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.166-173
    • /
    • 2014
  • In this study, a laminated composite material with dispersing aluminum oxide powder between the CFRP laminate plies, and also CFRP composites without aluminium oxide powder were fabricated for Mode I experiments using the DCB specimen and a tensile test. The behavior of the crack and the change of the interfacial fracture toughness were evaluated. Also in order to evaluate the damage mechanism for the crack extension, the AE sensor on the surface of the DCB test specimen was attached. AE amplitude was estimated for CFRP-alumina and CFRP composite. And the fracture toughness was evaluated by the stress intensity factor and energy release rate. The results showed that an unstable crack was propagated rapidly in CFRP composite specimen along with the interface, but crack propagation in CFRP-alumina specimen was relatively stable. From results, we show that aluminium oxide powder spreaded uniformly in the interface of the CFRP laminate carried out the role for preventing the sudden crack growth.

An Experimental Study for Failure Behavior of Composite Beams with DFRCC and FRP Plank with Rib (리브를 갖는 FRP 판과 고인성섬유보강콘크리트로 이루어진 합성보의 파괴거동에 대한 실험적 연구)

  • Kang, Ga-Ram;Yoo, Seung-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.16-23
    • /
    • 2016
  • DFRCC (ductile fiber reinforced cementitious composites), which are a significantly improved ductile material compared to conventional concrete, were evaluated as a new construction material with a high potential applications to concrete structures for a range of purposes. In this study, experiments on the failure behavior of composite beams with a DFRCC and FRP (fiber reinforced polymer) plank with a rib used as permanent formwork and tensile reinforcement were carried out. A normal concrete and a fiber reinforced concrete with PVA series of RF4000 and the PP series of PP-macro were used for comparison, and each RF4000+RSC15 and PP-macro+RSC15 was tested by producing composite beams. The experimental results of the FRP plank without a sand coating showed that sliding failure mode between the FRP plank and concrete started from a flexural crack at the beam center; therefore it is necessary for the FRP plank to be coated with sand and the effect of the fiber to failure mode did not appear to be huge. The experiment of the FRP plank with a sand coating showed that both 1200mm and 2000mm allowed sufficient bonding between the concrete and FRP plank. The maximum load of the fiber reinforced concrete was higher than that of normal concrete and the case which a series of PP fiber was mixed showed the highest value. The crack latency caused by the fibers led to composite action with a FRP rib.

Evaluation of Mechanical Performance Considering Prolonged Length of Glass Fiber-Reinforced Composite on Structure Weakness by Thermal Stress at Secondary Barrier in Cryogenic Liquified Gas Storage (극저온 액화가스 화물창 2차방벽 구조 열 응력 취약 부 Prolonged 길이 고려 유리섬유 강화 복합재 기계적 물성 평가)

  • Yeon-Jae Jeong;Hee-Tae Kim;Jeong-Dae Kim;Jeong-Hyun Kim;Seul-Kee Kim;Jae-Myung Lee
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.246-252
    • /
    • 2023
  • A secondary barrier made of glass fiber reinforced composites has been installed infinitely using automatic bonding machine(ABM) in membrane type LNG cargo containment system (CCS). At the same time, significant thermal stress due to cryogenic heat shrinkage has occurred in the composite on the non-bonding area between the adhesive fixation at both ends. There have been studies from the perspective of structural safety evaluation taking this into account, but none that have analyzed mechanical property taking an prolonged length into account. In this study, 2-parameter Weibull distribution statistical analysis was used to standardize reliable mechanical property for actual length, taking into account the composite's brittle fracture of ceramic material with wide fracture strength dispersion. Related experimental data were obtained by performing uniaxial tensile tests at specific temperatures below cryogenic condition considering LNG environment. As a result, the mechanical strength increased about 1.5 times compared to -20℃ at -70℃ and initial non-linear behavior of fiber stretched was suppressed. As the temperature decreased until the cryogenic, the mechanical strength continued to increase due to cold brittleness. The suggested mechanical property in this study would be employed to secure reliable analysis support material property when assessing the safety of secondary barrier's structures.

Effects of Fiber Orientations and Hybrid Ratios on Lubricant Tribological Characteristics of $Al_2O_{3f}/SiC_p$ Reinforced MMCs ($Al_2O_{3f}/SiC_p$ 금속복합재료의 섬유방향과 혼합비가 윤활마모특성에 미치는 영향)

  • Wang, Yi-Qi;Song, Jung-Il
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.15-23
    • /
    • 2009
  • The lubricant tribological characteristics of $Al_2O_3$ fiber and SiC particle hybrid metal matrix composites (MMCs) fabricated by squeeze casting method was investigated using a pin-on-disk wear tester. The wear tests of the MMCs were performed according to fiber/particle hybrid ratio in the planar-random (PR) and normal (N) orientations sliding against a counter steel disk at a fixed speed and $25\;kg_f$ loading under different sliding distances and temperatures. The test results showed that the wear behavior of MMCs varied with fiber orientation and hybrid ratio. At room temperature, the lubricant wear behavior of F20P0 unhybrid PR-MMCs was superior to that of N-MMCs while the hybrid composites exhibited the reverse lubricant wear behavior. It was also revealed that the wear resistance of PR-MMCs was superior to that of the N-MMCs due to the joint action of reinforcements and lubricant film between the friction surfaces at an elevated temperature of $100^{\circ}C$ for both fiber only and hybrid cases. In case of $150^{\circ}C$, although the trend of weight loss was similar to that of others, the wear resistance of PR-MMCs was better than that of N-MMCs for hybrid MMCs.

Micromechanical behavior of unidirectional composites under a transverse shear loading (횡방향 전단하중을 받는 단일방향 복합재료의 미시역학적 거동연구)

  • Choi, Heung-Soap;Achenbach, J.D.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1896-1911
    • /
    • 1997
  • Effects of fiber-matrix interphases on the micro-and macro-mechanical behaviors of unidirectionally fiber-reinforced composites subjected to transverse shear loading at remote distance have been studied. The interphases between fibers and matrix have been modeled by the spring-layer which accounts for continuity of tractions, but allows radial and circumferential displacement jumps across the interphase that are linearly related to the normal and tangential tractions. Numerical calculations for basic cells of the composites have been carried out using the boundary element method. For an undamaged composite the micro-level stresses at the matrix side of the interphase and effective shear stiffness have been computed as functions of fiber volume ratio $V_f$ and interphase stiffness k. Results are presented for various interphase stiffnesses from the perfect bonding to the case of total debonding. For a square array composite the results show that for a high interphase stiffness k>10, an increase of $V_f$ increases the effective transverse shear modulus G over bar of the composite. For a relatively low interphase stiffness k<1, it is shwon that an increase of $V_f$ slightly decreases the effective transverse shear modulus. For the perfect bonding case, G over bar for a hexagonal array composite is slightly larger than that for a square array composite. Also for a damaged composite partially debonded at the interphase, local stress fields and effective shear modulus are calculated and a decrease in G over bar has been observed.

AE Characteristics on the Damage Behavior of TiNi/A16061 Shape Memory Alloy Composites at High Temperature (TiNi/A16061 형상기억복합재료의 고온에서의 손상거동에 대한 AE 특성)

  • Lee, Jin-Kyung;Park, Young-Chul;Ku, Hoo-Taek
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.45-52
    • /
    • 2002
  • It has been known that tensile residual stresses occurring by the thermal expansion coefficient mismatch between fiber and matrix is a cause of the weak strength of metal matrix composites(MMCs). In order to solve this problem, TiNi alloy fiber was used as a reinforced material in TiNi/A16001 shape memory alloy composite in this study. TiNi alloy fiber improves the tensile strength of the composite by causing compressive residual stress in matrix on the basis of its shape memory effect. Pre-strain was imposed to generate the compressive residual stresses inside the TiNi/A16001 shape memory alloy composites. AE technique was used to quantify the microscopic damage behavior of the composite at high temperature. The effect of applied pre-strains on the AE behavior was also evaluated.

Characteristics of High Strength Polyethylene Tape Yarns and Their Composites by Solid State Processing Methods (고상공정법에 의한 고강도 폴리에틸렌 테이프사와 그 복합재료의 특성)

  • Lee, Seung-Goo;Cho, Whan;Joo, Yong-Rak;Song, Jae-Kyung;Joo, Chang-Whan
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.91-100
    • /
    • 1999
  • The manufacture of high strength polyethylene(HSPE) tape yarns has been accomplished by a solid state processing(SSP) method as the compaction of ultra-high molecular weight polyethylene(UHMWPE) powders and drawing of the compacted film under the melting point without any organic solvents. In this study, the characteristics of HSPE tape yarns produced by SSP which is desirable for production cost and environmental aspect were analyzed. As the results, tensile strengths of HSPE tape yarns increased with increasing the draw ratio and the fracture morphology of highly drawn HSPE tape yarns showed more fibrillar shape than the low drawn one. Interfacial shear strengths of HSPE tape yarns with vinylester resin increased by $O_2$ plasma treatment and maximum interfacial shear strength was obtained in the plasma treatment condition of 100W and 5min. In addition, mechanical properties of HSPE tape yarn reinforced composites were investigated and compared with those of the gel spun HSPE fiber reinforced composites.

  • PDF

A Study on Fabrication of Ti Matrix Composites by Liquid Phase Diffusion Bonding (액상확산접합법을 이용한 Ti 금속기복합재료 제조에 관한 연구)

  • Kim, Gyeong-Mi;U, In-Su;Gang, Jeong-Yun;Lee, Sang-Rae
    • Korean Journal of Materials Research
    • /
    • v.6 no.2
    • /
    • pp.210-220
    • /
    • 1996
  • The purpose of this study is to develop the processing techniques of Fiber Reinforced Metal by Liquid Phase Diffusion Bonding method with SiC fiber as a reinforcing material and CP Ti(Commercial Pure) as a matrix. The microstructure and the distribution of elements in reaction and CP Ti(Commercial Pure) as a matrix. The microstructure and the distribution of elements is reaction zone among CP Ti/Ti-15wt%Cu-20wt%Ni(TCN20)/SiC long fiber were investigated by Optical Microscope, SEM/EDX, EPMA, X-ray and AES. The results obtained in this study are as follows. 1) When Ti matrix composite materials are fabricated under the bonding condition of 1273Kx1200sec, the SiC long fiber was the most suitable reinforcing material for Ti matrix composite materials. 2) With SiC long fiber under same condition, a TiC layer(1.0-1.6$\mu\textrm{m}$) was observed on the surface of SiC long fiber. 3) Liquid Phase Diffusion Bonding has shown the feasibility of production of Ti matrix composite materials.

  • PDF

The Effect of ATH and Sb$_2$O$_3$on the Flammability and Mechanical Properties of Fiber Reinforced Plastics (ATH, Sb$_2$O$_3$조성에 따른 복합재료의 난연특성)

  • 강길호;최원종;김진곤;권경옥;박상윤;사공성호;김해형
    • Fire Science and Engineering
    • /
    • v.16 no.4
    • /
    • pp.65-71
    • /
    • 2002
  • In this paper, the thermal and flame properties of GFRP with various flame retardant(aluminum trihydrate, antimony trioxide) compositions have been investigated by thermal analysis and flammability tests(LOI test, flammability 45 degree test). The flame and mechanical properties(hardness, tensile strength, modulus) of general purpose grade glass fiber/unsaturated polyester composite with flame retardant composition have been also evaluated. The effect of cure pressure on the flame properties of aerospace grade glass fiber/epoxy composite was investigated. Considering the flame and mechanical property of composite, we could determine the optimum flame retardant composition(ATH 10∼20 phr). Test results show that the flame property of glass fiber/epoxy composite is considerably affected by cure pressure conditions.

Dynamic Mechanical Properties of Natural Fiber/Polymer Biocomposites: The Effect of Fiber Treatment with Electron Beam

  • Han, Young-Hee;Han, Seong-Ok;Cho, Dong-Hwan;Kim, Hyung-Il
    • Macromolecular Research
    • /
    • v.16 no.3
    • /
    • pp.253-260
    • /
    • 2008
  • Environmentally friendly biocomposites were made using plant-based natural fibers, such as henequen and kenaf. The natural fiber reinforced polypropylene (PP) and unsaturated polyester (UP) biocomposites were examined in terms of the reinforcing effect of natural fibers on thermoplastic and thermosetting polymers. Kenaf (KE) and henequen (HQ) fibers were treated with an electron beam (EB) of 10 and 200 kGy doses, respectively, or with a 5 wt% NaOH solution. Four types of biocomposites (KE/PP, HQ/PP, KE/UP and HQ/UP) were fabricated by compression molding and each biocomposite was characterized by dynamic mechanical analysis and thermogravimetric analysis. The kenaf fiber had the larger reinforcing effect on the dynamic mechanical properties of both PP and UP biocomposites than the henequen fiber. The highest storage modulus was obtained from the biocomposite with the combination of UP matrix and 200 kGy EB treated kenaf fibers.