• Title/Summary/Keyword: Fiber reinforced Composites

Search Result 1,361, Processing Time 0.032 seconds

CNT Buckypaper-Polyurethane Composite with Enhanced Strength, Toughness and Flexible (고강도, 고강성, 그리고 유연한 탄소나노튜브 버키페이퍼-폴리우레탄 나노복합체)

  • Ha, Yu-Mi;Lim, Da-un;Kim, Yoong Ahm;Jung, Yong Chae
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.161-166
    • /
    • 2016
  • Carbon nanotube buckypaper (CNTs-BP)/thermoplastic polyurethane (PU) elastomer composites were successfully fabricated. The CNTs-BP/PU nanocomposites exhibited simultaneous improvements in both tensile modulus and strength by 1360 and 430%, respectively, as compared to pure PU. Possible reinforcing mechanisms were evidenced by SEM analyses and tensile tests. The CNTs-BP/PU nanocomposites can be potentially used as an inter-reinforcing agent in ultra-lightweight, high-strength aircraft, carbon-fiber-reinforced plastics, etc.

Comparison of Interfacial Aspects of Carbon and Glass Fibers/Epoxy Composites by Microdroplet Tests at Low and Room Temperatures (상온 및 저온에서의 탄소와 유리섬유/에폭시 복합재료의 계면특성 비교)

  • Wang, Zuo-Jia;GnidaKouong, Joel;Kim, Myung-Soo;Park, Joung-Man;Um, Moon-Kwang
    • Journal of Adhesion and Interface
    • /
    • v.10 no.4
    • /
    • pp.162-168
    • /
    • 2009
  • As a preliminary study of optimum composite properties under cryogenic temperature, the comparison of interfacial properties of carbon or glass fibers reinforced epoxy composites was evaluated at ambient and intermediate low temperature, i.e., 25 and $-10^{\circ}C$ by using micromechanical techniques. Under tensile and compressive loading conditions, their mechanical modulus at low temperature was higher than that atambient temperature. Interfacial shear strength (IFSS) at ambient and low temperatures was compared to each other, depending on epoxy matrix toughness and apparent modulus at the interface. The IFSS was much higher at low temperature than that at room temperature because of the increased epoxy matrix modulus. Statistical distributions of tensile strengths of glass and carbon fibers were evaluated for different temperature ranges, which is dependent upon fiber's inherent flaws and rigidity.

  • PDF

Effects of Al2O3-RE2O3 Additive for the Sintering of SiC and the Fabrication of SiCf/SiC Composites (SiC 소결에 미치는 Al2O3-RE2O3 첨가제의 영향과 SiCf/SiC 복합체의 제조)

  • Yu, Hyun-Woo;Raju, Kati;Park, Ji Yeon;Yoon, Dang-Hyok
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.364-371
    • /
    • 2013
  • The sintering behavior of monolithic SiC is examined using the binary sintering additive of $Al_2O_3$-rare earth oxide ($RE_2O_3$, where RE = Sc, Nd, Dy, Ho, or Yb). Through hot pressing at 20 MPa and $1750^{\circ}C$ for 1 h in an Ar atmosphere for 52 nm fine ${\beta}$-SiC powder added with 5 wt% sintering additive, a SiC density of > 97% is achieved, which indicates the effectiveness of $Al_2O_3-RE_2O_3$ system as a sintering of additive for SiC. Based on this result, 7 wt% of $Al_2O_3-Sc_2O_3$ is tested as an additive system for the fabrication of a continuous SiC fiber-reinforced SiC-matrix composite ($SiC_f$/SiC). Electrophoretic deposition combined with the application of ultrasonic pulses is used to efficiently infiltrate the matrix phase into the voids of $Tyranno^{TM}$-SA3 fabric. After hot pressing, a composite density of > 97% is obtained, along with a maximum flexural strength of 443 MPa.

A Study on Mode 1 and Mode 2 Interlaminar Fracture Toughness of Carbon Fiber Reinforced Plastics (탄소섬유 복합재료의 모드1 및 모드 2 층간파괴인성치에 관한 연구)

  • Kim, Jae-Dong;Koh, Sung-Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.3
    • /
    • pp.272-278
    • /
    • 1995
  • In this paper to investigate mode I and mode II critical energy release rates, G sub(IC) and G sub(IIC), three prepregs which are domestic products are used. Those are used for the unidirectional composites, but only one is used for the cross-ply laminate composites which is molded [0/90] sub(6s), [0/45] sub(6s) and [0/45/90] sub(6s). The value of G sub(IC) is almost same when modified three calculating methods are applied. The highest value of G sub(IC) at crack initiation is obtained at the [0/90] sub(6s) interlaminar and the lowest one is at the [0/45/90] sub(6s) interlaminar.

  • PDF

A Study on Fracture Property of Adhesive Interface at Tapered Double Cantilever Beam with Inhomogeneous Composite Material due to Loading Conditions of In-plane and Out-plane (면내 및 면외 하중 조건들에 따른 이종 복합 소재를 가진 경사진 이중외팔보에서의 접착계면의 파괴 특성 연구)

  • Lee, Jung-Ho;Kim, Jae-Won;Cheon, Seong-Sik;Cho, Jae-Ung
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.401-407
    • /
    • 2020
  • At the engineering and industrial areas, the lightweight composite material has been substituted with the metals, such as steel at the structural parts. This composite material has been applied by the adhesive bonding method, as well as the joint methods with rivets, welds or bolts and nuts. The study on the strength characteristics of adhesive interface is necessarily required in order to apply the method to composite materials. CFRP specimens as the fiber reinforced plastic composites were manufactured easily and this study was carried out. The static experiments were performed under the loading conditions of in-plane and out-plane shears with the inhomogeneous composite TDCB specimens with CFRP, aluminum (Al6061), and aluminum foam (Al-foam). Through the result of this study, the durability on the inhomogeneous composite structure with adhesive interface was investigated by examining the fracture characteristic and the point in time.

The Design of a Hybrid Composite Strut Tower for Improving Impact Resistance and Light-weight (내충격성 향상 및 경량화를 위한 하이브리드 복합재료 스트럿 타워 설계)

  • Lee, Hyun Chul;Oh, Hyun Ju;Kim, Seong Su
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.223-229
    • /
    • 2013
  • Hybrid composite strut tower was designed to prevent permanent deformation of upper mount by the impact from the uneven road. When exceeding energy absorption capacity of tire and suspension systems, residual impact is delivered to upper mount. Especially, in case of using high-rigidity suspension system for high driving performance, the conventional strut tower can be easily deformed due to reduction of energy absorption capacity of suspension systems. In this study, optimal design of hybrid composite strut tower which made of back-up metal and carbon fiber reinforced composite was suggested by using finite element analysis, and low velocity impact test was performed to investigate their dynamic characteristics. Also, 3D measuring and ultra c-scanning methods were carried out to diagnose damages in the strut towers.

Timber-FRP composite beam subjected to negative bending

  • Subhani, Mahbube;Globa, Anastasia;Moloney, Jules
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.353-365
    • /
    • 2020
  • In the previous studies, the authors proposed the use of laminated veneer lumber - carbon fiber reinforced polymer (LVL-CFRP) composite beams for structural application. Bond strength of the LVL-to-CFRP interface and flexural strengthening schemes to increase the bending capacity subjected to positive and negative moment were discussed in the previous works. In this article, theoretical models are proposed to predict the moment capacity when the LVL-CFRP beams are subjected to negative moment. Two common failure modes - CFRP fracture and debonding of CFRP are considered. The non-linear model proposed for positive moment is modified for negative moment to determine the section moment capacity. For the debonding based failure, previously developed bond strength model for CFRP-to-LVL interface is implemented. The theoretical models are validated against the experimental results and then use to determine the moment-rotation behaviour and rotational rigidity to compare the efficacy of various strengthening techniques. It is found that combined use of bi- and uni-directional CFRP U-wrap at the joint performs well in terms of both moment capacity and rotational rigidity.

Finite element analysis of CFRP laminate repairs on damaged end regions of prestressed concrete bridge girders

  • Shaw, Ian D.;Andrawes, Bassem
    • Advances in Computational Design
    • /
    • v.2 no.2
    • /
    • pp.147-168
    • /
    • 2017
  • Over the past couple decades, externally bonded fiber reinforced polymer (FRP) composites have emerged as a repair and strengthening material for many concrete infrastructure applications. This paper presents an analytical investigation of the use of carbon FRP (CFRP) for a specific problem that occurs in concrete bridge girders wherein the girder ends are damaged by excessive exposure to deicing salts and numerous freezing/thawing cycles. A 3D finite element (FE) model of a full scale prestressed concrete (PC) I-girder is used to investigate the effect of damage to the cover concrete and stirrups in the end region of the girder. Parametric studies are performed using externally bonded CFRP shear laminates to determine the most effective repair schemes for the damaged end region under a short shear span-to-depth ratio. Experimental results on shear pull off tests of CFRP laminates that have undergone accelerated aging are used to calibrate a bond stress-slip model for the interface between the FRP and concrete substrate and approximate the reduced bond stress-slip properties associated with exposure to the environment that causes this type of end region damage. The results of these analyses indicate that this particular application of this material can be effective in recovering the original strength of PC bridge girders with damaged end regions, even after environmental aging.

Fabrication and Wear Property Evaluation for FeCrSi/AC8A Composite by Low-pressure Infiltration (저압함침법에 의한 FeCrSi/AC8A 복합재료의 제조와 마모특성 평가)

  • Song, Tae-Hoon;Lee, Hyun-Jun;Choi, Yong-Bum;Kim, Sung-Jin;Park, Won-Jo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.106-111
    • /
    • 2008
  • In this paper, study about property evaluation for the metal matrix composites fabricated by low pressure infiltration process. Aluminum alloy composite which is reinforced by Metal fiber preform was fabricated by low pressure casting process. Infiltration condition was changed the pressure infiltration time of 1 sec, 2 sec and 5 sec under a constant pressure of 0.4 MPa. The molten alloy completely infiltrated the FeCrSi metal perform regardless of the increase in the pressure acceleration time. The the porosity in the FeCrSi/AC8A composite was investigated. The porosity was reduced as the pressure acceleration time as shorter. The FeCrSi/AC8A composite was investigated the wear test for to know the relationship between Porosity and wear resistance. FeCrSi/AC8A composite at pressure acceleration time of 1sec is shown excellent wear resistance.

Load Carrying Capacity due to Cracking Damage of Ellipsoidal Inhomogeneity in Infinite Body under Pure Shear and Its Elastic Stress Distributions (전단응력하의 무한체내 타원체불균질물의 균열손상에 따른 하중부하능력과 탄성응력분포)

  • 조영태;임광희;고재용;김홍건
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.87-90
    • /
    • 2001
  • In particle or short-fiber reinforced composites, cracking of the reinforcements is a significant damage mode because the broken reinforcements lose load carrying capacity. This paper deals with elastic stress distributions and load carrying capacity of intact and cracked ellipsoidal inhomogeneities. Three dimensional finite element analysis has been carried out on intact and broken ellipsoidal inhomogeneities in an infinite body under pure shear. For the intact inhomogeneity, as well known as Eshelby(1957) solution, the stress distribution is uniform in the inhomogeneity and non-uniform in the surrounding matrix. On the other hand, for the broken inhomogeneity, the stress in the region near crack surface is considerably released and the stress distribution becomes more complex. The average stress in the inhomogeneity represents its load carrying capacity, and the difference of average stresses between the intact and broken inhomogeneities indicates the loss of load carrying capacity due to cracking damage. The load carrying capacity of the broken inhomogeneity is expressed in terms of the average stress of the intact inhomogeneity and some coefficients. It is found that the broken inhomogeneity with higher aspect ratio still maintains higher load carrying capacity.

  • PDF