• Title/Summary/Keyword: Fiber properties

Search Result 4,935, Processing Time 0.037 seconds

Mechanical Properties of Carbon Fiber Nano Composites for Nano-fiber Additives and Fabric Orientation (나노섬유 분산과 섬유 배향성에 따른 탄소섬유 나노 복합재료의 기계적 특성)

  • Song, Jun Hee;Choi, Jun Yong;Kim, Yonjig
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.93-99
    • /
    • 2012
  • The mechanical properties of nano composites were evaluated for structural performance in order to enhance their applicability to the car and machine industrial fields. Carbon fiber reinforced plastics (CFRP) and GFRP were manufactured by vacuum-assisted resin transfer molding (VARTM) process with good mechanical properties. Tensile test was conducted to obtain the process factor of each composite. Also, carbon nano fiber (CNF) was dispersed in the composites and the relationship between the mechanical property and the CNF fraction was compared. The tensile strength and stiffness of 0/90 laminated CFRP were the best. CFRP/CNF (0.5 wt.%) was confirmed to be an excellent material for its elasticity and tensile strength.

Green Composites. II. Environment-friendly, Biodegradable Composites Using Ramie Fibers and Soy Protein Concentrate (SPC) Resin

  • Nam Sung-Hyun;Netravali Anil N.
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.380-388
    • /
    • 2006
  • Fully biodegradable and environment-friendly green composite specimens were made using ramie fibers and soy protein concentrate (SPC) resin. SPC was used as continuous phase resin in green composites. The SPC resin was plasticized with glycerin. Precuring and curing processes for the resin were optimized to obtain required mechanical properties. Unidirectional green composites were prepared by combining 65% (on weight basis) ramie fibers and SPC resin. The tensile strength and Young's modulus of these composites were significantly higher compared to those of pure SPC resin. Tensile and flexural properties of the composite in the longitudinal direction were moderate and found to be significantly higher than those of three common wood varieties. In the transverse direction, however, their properties were comparable with those of wood specimens. Scanning electron microscope (SEM) micrographs of the tensile fracture surfaces of the green composite indicated good interfacial bonding between ramie fibers and SPC resin. Theoretical values for tensile strength and Young's modulus, calculated using simple rule of mixture were higher than the experimentally obtained values. The main reasons for this discrepancy are loss of fiber alignment, voids and fiber compression due to resin shrinking during curing.

Effects of Surfactants on Dispersion Behavior of Vectran® in Water(II) -Study on the Manufacture and Properties of Wet-laid Nonwoven Fabrics- (Vectran®의 수중 분산 거동에 미치는 계면활성제의 영향(II) - 습식부직포의 제조와 그 물성연구 -)

  • Kang, Yoo-Jung;Song, Sun-Hye
    • Textile Coloration and Finishing
    • /
    • v.27 no.4
    • /
    • pp.327-333
    • /
    • 2015
  • This paper aims to manufacture nonwoven fabrics by wet-laid technology using Vectran$^{(R)}$ one of the highly favoured high-performace fiber. In previous study, a novel evaluation on fiber dispersion was studied to select optimum surfactant by the need for the control of fiber dispersion in water with reference to wet-laid nonwoven technology. 3 Types of sulfonate anionic surfactants were chosen and added in a stage of agitation to improve dispersion behavior of fibers in water. It was observed that the state of fiber dispersion in water affected various properties of nonwovens, including appearance, physical properties, and mechanical properties. Nonwoven added SDBS was uniform in web structure, thickness and weight. Its average pore was small in size and consisted of fine pores and the value of porosity was high. Further, the difference of tensile value between 2 directions was the least. Consequentially, as the dispersion behavior of fiber increases, nonwoven shows more balanced and uniform physical properties in all directions.

The Effect of Moisture Absorption and Gel-coating Process on the Mechanical Properties of the Basalt Fiber Reinforced Composite

  • Kim, Yun-Hae;Park, Jun-Mu;Yoon, Sung-Won;Lee, Jin-Woo;Jung, Min-Kyo;Murakami, Ri-Ichi
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.3
    • /
    • pp.148-154
    • /
    • 2011
  • Generally, strength degradation is caused by the absorption of moisture in composites. For this reason, a fracture is generated in the composites and traces of glass fiber degrade human health and physical damage is generated. Therefore, in this research, we studied the mechanical properties change of composites by moistureabsorption. The composites were manufactured with and without the Gel-coating process and were immersed in a moisture absorption device at $80^{\circ}C$ for more than 100 days. The mechanical properties of the moistureabsorption composites and the composites which dry after moisture-absorption were compared. The mechanical properties degradation of basalt fiber composites according to the result of the measurement of moistureabsorption was smaller than that of glass fiber composites by about 20%. In addition, the coefficient of moisture absorption was lower for the case of Gel-coating processing than the composites without the Gel-coating process by about 2% and it was deduced that Gel-coating did not have a significant effect on the mechanical properties.

Effects of Carbon Fiber on Mechanical Behaviour of Al2O3 Porous Ceramics

  • Basnet, Bijay;Lim, Hyung Mi;Lee, Kee Sung;Kim, Ik Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.5
    • /
    • pp.513-520
    • /
    • 2019
  • This study reports the improvement of mechanical properties of Al2O3 porous ceramics from colloidal suspension with the addition of carbon fiber by direct foaming. The initial colloidal suspension of Al2O3 was partially hydrophobized by surfactant to stabilize wet foam with the addition of carbon fiber from 2 to 8 wt% as stabilizer. The influence of carbon fiber on the air content, bubble size, pore size and pore distribution in terms of wet foam stability and physical properties of porous ceramics were discussed. The viscosity of the colloidal suspension was increased giving solid like properties with the increased in carbon fiber content. The mechanical properties of the sintered porous samples were investigated by Hertzian indentation test. The results show the wet foam stability of more than 90% corresponds to compressive loading of 156.48 N and elastic modulus of 57.44 MPa of sintered sample with 8 wt% of carbon fiber content.

Relations between rheological and mechanical properties of fiber reinforced mortar

  • Cao, Mingli;Li, Li;Xu, Ling
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.449-459
    • /
    • 2017
  • Fresh and hardened behaviors of a new hybrid fiber (steel fiber, polyvinyl alcohol fiber and calcium carbonate whisker) reinforced cementitious composites (HyFRCC) with admixtures (fly ash, silica fume and water reducer) have been studied. Within the limitations of the equipment and testing program, it is illustrated that the rheological properties of the new HyFRCC conform to the modified Bingham model. The relations between flow spread and yield stress as well as flow rate and plastic viscosity both conform well with negative exponent correlation, justifying that slump flow and flow rate test can be applied to replace the other two as simple rheology measurement and control method in jobsite. In addition, for the new HyFRCC with fly ash and water reducer, the mathematical model between the rheological and mechanical properties conform well with the quadratic function, and these quadratic function curves are always concave upward. Based on mathematical analysis, an optimal range of rheology/ flowability can be identified to achieve ideal mechanical properties. In addition, this optimization method can be extended to PVA fiber reinforced cement-based composites.

Electrical Properties of Carbon Fiber/Aluminum Composite (Carbon Fiber/ Aluminum 복합재료의 전기적 특성연구)

  • Han, Se-Won;Kim, Bong-Seo;Woo, Byung-Chu;Lee, Hee-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.259-262
    • /
    • 1991
  • Carbon fiber/Aluminum composites were fabricated vacuum hot press method with condition of $10^{-3}$ torr, 100MPa, $600^{\circ}C$, 30min. Microstructure, mechanical properties, electrical properties and thermal properties of CF/Al composites were studied.

  • PDF

Mechanical Properties of Steel-Fiber Reinforced Concrete (강섬유보강콘크리트의 역학적 거동 특성)

  • 홍성구;권숙국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.3
    • /
    • pp.81-91
    • /
    • 1989
  • The aims of this study were to determine mechanical properties of steel-fiber reinforced concrete under splitting tensile, flexural and compressive loading, and thus to improve the possible applications of concrete. The major factors experimentally investigated in this study were the fiber content and the length and the diameter of fibers. The major results obtained are summarized as follows : 1.The strength, strain, elastic modulus and energy obsorption capability of steel-fiber reinforced concrete under splitting tensile loading were significantly improved by increasing the fiber content or the aspect ratio. 2.The flexural strength, central deflection, and flexural toughness of steel4iber reinforced beams were significantly improved by increasing the fiber content or the aspect ratio. And flexural behavior characteristic was good at the aspect ratio of about 60 to 75. 3.The strength, strain, and energy absorption capability in compression were increased with the increase of the fiber content. These effects were not so sensitive to the aspect ratio. The energy absorption capability was improved only slightly with the increase of the fiber length. 4.The elastic modulus, transverse strains, and poisson's ratios in compression were not influenced by the fiber content. 5.The steel-fibers were considered to be appropriated as the materials covering the weakness of concrete because the mechanical properties of concrete in tension and flexure were significantly improved by steel-fiber reinforcement.

  • PDF

Interfacial Phenomena of Lignocellulose Fiber/Thermoplastic Polymer Composites (리그노셀룰로오스 섬유/열가소성 고분자 복합재의 계면 현상)

  • Son, Jungil;Yang, Han-Seung;Kim, Hyun-Joong
    • Journal of Adhesion and Interface
    • /
    • v.3 no.4
    • /
    • pp.44-52
    • /
    • 2002
  • Composite materials are created by combining two or more component to achieve desired properties which could not be obtained with the separate components. The use of reinforcing fillers, which can reduce material costs and improve certain properties, is increasing in thermoplastic polymer composites. Currently, various inorganic fillers such as talc, mica, clay, glass fiber and calcium carbonate are being incorporated into thermoplastic composites. Nevertheless, lignocellulose fibers have drawn attention due to their abundant availability, low cost and renewable nature. In recent, interest has grown in composites made from lignocellulose fiber in thermoplastic polymer matrices, particularly for low cost/high volume applications. In addition to high specific properties, lignocellulose fibers offer a number of benefits for lignocellulose fiber/thermoplastic polymer composites. These include low hardness, which minimize abrasion of the equipment during processing, relatively low density, biodegradability, and low cost on a unit-volume basis. In spite of the advantage mentioned above, the use of lignocellulose fibers in thermoplastic polymer composites has been plagued by difficulties in obtaining good dispersion and strong interfacial adhesion because lignocellulose fiber is hydrophilic and thermoplastic polymer is hydrophobic. The application of lignocellulose fibers as reinforcements in composite materials requires, just as for glass-fiber reinforced composites, a strong adhesion between the fiber and the matrix regardless of whether a traditional polymer matrix, a biodegradable polymer matrix or cement is used. Further this article gives a survey about physical and chemical treatment methods which improve the fiber matrix adhesion, their results and effects on the physical properties of composites. Coupling agents in lignocellulose fiber and polymer composites play a very important role in improving the compatibility and adhesion between polar lignocellulose fiber and non-polar polymeric matrices. In this article, we also review various kinds of coupling agent and interfacial mechanism or phenomena between lignocellulose fiber and thermoplastic polymer.

  • PDF

An Experimental Study on the Development of Hybrid Discontinuous Fiber Reinforced Cementitious Composite (하이브리드형 단섬유보강 시멘트복합재료의 개발에 관한 실험적 연구)

  • 김영덕;조봉석;김재환;김용로;윤현도;김무한
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.57-60
    • /
    • 2003
  • Generally, normal concrete has the disadvantages of low tensile strength, low ductility and volume instability. To improve its performance, fiber reinforced cimentitious composite(FRCC) have been development. These composites are composed of cement, sand, water, a small amount of admixtures, and an optimal amount of fiber like synthetic fiber and steel fiber. This research investigates influence of sand, hybrid fiber and fiber volume fraction, and reports the test results of mechanical properties, fracture behavior and failure pattern of the FRCC. Our experiment was observed that sand mixed FRCC has lower compressive strength and higher bending strength than no sand mixed FRCC, and more steel fiber mixed FRCC has higher compressive strength and bending strength. Hybrid FRCC of steel and polypropylene had superior properties than FRCC of polypropylene only in same fiber volume fraction.

  • PDF