• Title/Summary/Keyword: Fiber failure

Search Result 1,183, Processing Time 0.025 seconds

Influence of pre-compression on crack propagation in steel fiber reinforced concrete

  • Abubakar, Abdulhameed U.;Akcaoglu, Tulin
    • Advances in concrete construction
    • /
    • v.11 no.3
    • /
    • pp.261-270
    • /
    • 2021
  • In this study, a new understanding is presented on the microcracking behavior of high strength concrete (HSC) with steel fiber addition having prior compressive loading history. Microcracking behavior at critical stress (σcr) region, using seven fiber addition volume of 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, and 2.0% was evaluated, at two aspect ratios (60 and 75). The specimens were loaded up to a specified compressive stress levels (0.70fc-0.96fc), and subsequently subjected to split tensile tests. This was followed by microscopic analyses afterwards. Four compressive stress levels as percentage of fc were selected according to the linearity end point based on stress-time (σ-t) diagram under uniaxial compression. It was seen that pre-compression has an effect on the linearity end point as well as fiber addition where it lies within 85-91% of fc. Tensile strength gain was observed in some cases with respect to the 'maiden' tensile strength as oppose to tensile strength loss due to the fiber addition with teething effect. Aggregate cracking was the dominant failure mode instead of bond cracks due to improved matrix quality. The presence of the steel fiber improved the extensive failure pattern of cracks where it changes from 'macrocracks' to a branched network of microcracks especially at higher fiber dosages. The applied pre-compression resulted in hardening effect, but the cracking process is similar to that in concrete without fiber addition.

Application of a fiber optic TR-EEPI sensor to detect deformation and failure in composite materials (복합재료의 변형 및 파손탐지를 위한 광섬유 TR-EFPI 센서의 적용)

  • 박래영;권일범;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.31-34
    • /
    • 2002
  • A study on the method that can measure the internal strain of composite materials is performed to monitor the health status of composite structures. A fiber optic sensor was constructed using the total reflected extrinsic Fabry-Perot interferometer(TR-EFPI) probe with a broadband light source. Result obtained from electrical strain gage adhered on the aluminum beam specimen was compared with that from the fiber optic TR-EFPI sensor and showed a good agreement. It was found that fiber optic TR-EFPI sensor system was adequate for monitoring the strain and thus failure processes in the interior of composite materials.

  • PDF

Temperature Effect on Impact Fracture Behavior of GF/PP Composites (GF/PP 복합재료의 충격파괴거동에 대한 온도효과)

  • Koh, Sung-Wi;Um, Yoon-Sung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.1
    • /
    • pp.78-84
    • /
    • 2005
  • The main goal of this work is to study the effects of temperature and volume fraction of fiber on the Charpy impact test with GF/PP composites. The critical fracture energy and failure mechanisms of GF/PP composites are investigated in the temperature range of 60^{\circ}C$ to -50^{\circ}C$ by impact test. The critical fracture energy increased as the fiber volume fraction ratio increased. The critical fracture energy shows a maximum at ambient temperature and it tends to decreases as temperature goes up or goes down. Major failure mechanisms can be classified such as fiber matrix debonding, fiber pull-out and/or delamination and matrix deformation.

Effect of Fiber on the Acoustic Emission of High Performance Fiber-Reinforced Cement Composite (섬유종류에 따른 고인성 시멘트 복합체의 음향방출특성)

  • Kim, Yun-Soo;Jeon, Esther;Kim, Sun-Woo;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.342-345
    • /
    • 2006
  • The properties of reinforcing fiber, as tensile strength, aspect ratio and elastic modulus, have great effect on the fracture behavior of HPFRCC(High performance fiber-reinforced cementitious composite). Acoustic emission(AE) method was used to evaluate the characteristics of fracture process and the micro-failure mechanism of HPFRCC. For these purposes, three kinds of fibers were used : PP(Polypropylene), PE(Polyethylene), SC(Steel cord). In this study, the AE characteristics of HPFRCC with different fiber type(PE.15, PP2.0, SC0.75+PE0.75) distributions under four-point-bending were studied. The result show that the AE technique is a valuable tool to study the failure mechanism of HPFRCC.

  • PDF

An Experimental Study on Shear Strengthening of Concrete Deep Beams with Glass Fiber Sheets (유리섬유보강재를 이용한 Deep Beam의 전단보강에 관한 실험적 연구)

  • Jo, Byoung-Wan;Kim, Young-Jin;Kim, Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.609-614
    • /
    • 1997
  • Recently, many researchers have performed R&D about strengthening of R/C with steel plates, carbon fiber sheets. aramid fiber sheets and glass fiber sheets, and so on. However most of research were limited in study of flexural strengthening of R/C beams. This paper shows the results of an experimental study on shear reinforcement of deep beams using Glass Fiber Sheet in relation to shear-span ratio. strengthening orientation and anchorage. The results prove that shear failure is governed by reinforced orientation. adherence and anchorage. Additional anchorage of fibers does not only cause the improvement in the internal resistance, but also control the brittle shear failure of specimen after reaching the maximum load.

  • PDF

The Strength Characteristics of Concrete Confined with Composite Fiber (복합섬유(複合纖維) 횡보강(橫補强)콘크리트의 강도(强度) 특성(特性)에 관한 연구(硏究))

  • Jang, Jeong-Su;Jo, Seong-Chan;Gang, Chung-Ryeor
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.93-102
    • /
    • 2001
  • The objective of this experimental study is to evaluate the strengthening effects of concrete compression confined with Epoxy-boned compound fiber sheets. An analytical model is proposed to construct a stress-strain relationship for confined concrete. Test results are summarized as followed. While non-FRP lateral confinement specimens appeared sudden failure after shell concrete was torn off, specimens confined laterally with FRP were showed that their failure. Specially, Glass fiber lateral confined specimens occurred obviously increase ductility ability. Hence, concrete specimen with lateral confinement by Hi-carborn and Aramide. Glass fiber simultaneously can be increased in not only strength but also a lot of ductility ability.

  • PDF

Properties of Fire Resistance of High Performance Concrete Using Cellulose Fiber (셀룰로오스 섬유를 사용하는 고성능 콘크리트의 내화특성)

  • Kim Kyoung Min;Joo Eun Hi;Hwang Yin Seong;Jee Suk Won;Lee Seong Yeun;Han Cheon Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.557-560
    • /
    • 2004
  • This paper is to investigate the fire endurance of high performance concrete with the contents of cellulose fiber. According to test results, the use of CL lead to decrease in fluidity. For compressive strength, the use of CL had no influence on compressive strength. For spalling properties, plain concrete showed a severe spalling failure. The use of CL protected from spalling of concrete, but most specimens had scale failure and partial destruction of specimens. This is due to the insufficient fiber length and diameter of CL fiber, which was unable to discharging the internal vapour pressure. For this reason, CL fiber can not be used to protect from spalling oh high performance concrete. Residual strength was observed to $5\~7\%$ of original strength.

  • PDF

An Experimental Study on the Bond Failure Behavior between Parent Concrete and CFM (콘크리트와 탄소섬유메쉬의 부착파괴 거동에 관한 실험적 연구)

  • 오재혁;성수용;한병찬;윤현도;서수연;김태용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.965-970
    • /
    • 2002
  • The strengthening of concrete structures in situ with externally bonded carbon fiber is increasingly being used for repair and rehabilitation of existing structures. Carbon fiber is attractive for this application due to its good tensile strength, resistances to corrosion, and low weight. Generally bond strength and behavior between concrete and carbon fiber mesh(CFM) is very important, because of the enhanced bond of CFM. Therefore if bond strength is sufficient, it will be expected to enhance reinforcement effect. If insufficient, reinforcement effect can not be enhanced because of bond failure between concrete and CFM. This study is to investigate the bond strength of CFM to the concrete using direct pull-out test and tensile-shear test. The key variables of the experiment are the location of clip, number of clips and thickness of cover mortar. The general results indicate that the clip anchorage technique for increasing bond strength with CFM appear to be effective to maintain the good post-failure behavior.

  • PDF

Effect of Shear Key and U strip on Flexural Behavior of Reinforced Concrete Beams Strengthened by CFS(Carbon Fiber Sheet) (탄소섬유쉬트로 보강된 철근콘크리트 보의 휨거동에 전단키와 U 스터립이 미치는 영향)

  • Choi, Hong-Shik;Lee, Chin-Yong;Yi, Seong-Tae;Lee, Si-Woo;Heo, Gweon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.88-91
    • /
    • 2004
  • It is generally known that the bonding strength of RC(Reinforced Concrete) flexural members strengthened by fiber sheet composites are sufficient and the bonding failure does not occur until the sheet failed. However, many researchers have been reported that, before the failure of the sheet, the bonding failure happens even though the bonding length is sufficient. This study was carried out to evaluate the effectiveness of shear key and U strip on flexural behavior of reinforced concrete beam structures. The ply number of CFS(Carbon Fiber Sheet), location of shear key, and existence or not of U strip were selected as the main test variables. Test results show that the behavior of a beam of which shear key is located in the nearby. of support and U strip is not existent, and having CFS of 1 ply is mostly improved.

  • PDF

A Study on the Fracture Toughness of Glass-Carbon Hybrid Composites (유리-탄소 하이브리드 복합재료의 파괴인성에 관한 연구)

  • No, Ho-Seop;Go, Seong-Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.3
    • /
    • pp.295-305
    • /
    • 1992
  • The critical strain energy release rate and the failure mechanisms of glass-carbon epoxy resin hybrid composites are investigated in the temperature range of the ambient temperature to 8$0^{\circ}C$. The direction of laminates and the volume fraction are [(+45, -45, 0, 0) sub(2) ] sub(s), 50%, respectively. The major failure mechanisms of these composites are studied using the scanning electron microscope for the fracture surface. Results are summarized as follows: 1) The critical strain energy release rate shows a maximum at ambient temperature and it tends to decrease as temperature goes up. 2) The critical strain energy release rate increases as the content of glass increases, and especially shows dramatic increase for the high glass fiber content specimens. 3) Major failure mechanisms can be classfied such as localized shear yielding, fiber-matrix debonding, matrix micro-cracking, and fiber pull-out and/or delamination.

  • PDF