• Title/Summary/Keyword: Fiber failure

Search Result 1,168, Processing Time 0.034 seconds

Behavior of Plain and Steel Fiber Reinforced High Strengh Concrete Under Uniaxial and Biaxial Compression (1축 및 2축 압축을 받는 고강도콘크리트 및 강섬유보강 고강도콘크리트의 거동)

  • Lim, Dong-Hwan;Park, Sung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.5-8
    • /
    • 2005
  • The purpose of this study is to investigate the mechanical characteristics of plain and steel fiber high strength concrete under uniaxial and biaxial loading condition. A number of plain and steel fiber high strength concrete cubes having 28 days compressive strength of 82.7Mpa (12,000psi) were made and tested. Four principal compression stress ratios, and four fiber concentrations were selected as major test variables. From test results, it is shown that confinement stress in minor stress direction has pronounced effect on the strength and deformational behavior. Both of the stiffness and ultimate strength of the plain and fiber high strength concrete increased. The maximum increase of ultimate strength occurred at biaxial stress ratio of 0.5 in the plain high strength concrete and the value were recorded 30 percent over than the strength under uniaxial condition. The failure modes of plain high strength concrete under uniaxial compression were shown as splitting type of failure but steel fiber concrete specimens under biaxial condition showed shear type failure.

  • PDF

Structural behavior of R/C Beam Strengthened with Steel Plate, Carbon Fiber Sheets, and Carbon Fiber Laminate. (강판, 탄소섬유쉬트, 탄소섬유판으로 휨보강된 천근콘크리트보의 구조적 거동)

  • Lee, Young-Jea;Moon, Heui-Jeung;Lee, Kyung-Un;Jung, Sang-Jin;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.691-696
    • /
    • 1997
  • In recent years, stengthening of beam by steel plate, carbon fiber sheets, and carbon fiber laminate is spotlighted in order to repair and rehabilitation of R/C structures. In this study, 3 method of rehabilitation technic are analyzed from the tests. Test parameters are the width of cracks, the method of repair and rehabilitation, the magnitude of existing load. Deflection, failure load, strains of reinforcing bar, strains of sheet and plates are measured during tests. The failure mode and ultimate load are analyzed from these measured data. Test result shows that the width of cracks and the magnitude of existing load do not make any difference of ultimate flexural capacity.

  • PDF

Tensile Failure and Buckling Load Improvement of Composite Plates With A Central Hole (원공이 있는 복합재료 평판의 인장파단 및 좌굴 하중 개선)

  • 이호형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.242-245
    • /
    • 1999
  • In aerospace industry improvement of structural performance of flight structure without increasing weight has great advantage. In this study, an innovative design method to increase the buckling load and tension failure load at the same time without increasing the weight was investigated by using the curvilinear fiber format in composite plates with central hole. It was investigated how much gain can be obtained with curvilinear fiber format for the plates with different hole size and different stacking sequence.

  • PDF

Effect of Fiber Orientation on Failure Strength Properties of Natural Fiber Reinforced Composites including Adhesive Bonded Joint (접착제 접합된 자연섬유강화 복합재료의 파괴강도 특성에 미치는 섬유 방향의 영향)

  • Yoon, Ho-Chel
    • Journal of Welding and Joining
    • /
    • v.24 no.5
    • /
    • pp.43-48
    • /
    • 2006
  • This paper is concerned with a fracture strength study of composite adhesive lap joints. The tests were carried out on specimen joints manufactured hybrid stacked composites such as the polyester and bamboo natural fiber layer. The main objective of the work was to test the fracture strength using hybrid stacked composites with a polyester and bamboo natural fiber layer. Tensile and peel strength of hybrid stacked composites are tested before appling adhesive bonding. From results, Natural fiber reinforced composites have lower tensile strength than the original polyester. and The load directional orientation and small amount and low thickness of bamboo natural fiber layer have a good effect on the tensile and peel strength of natural fiber reinforced composites. The failure strength of these materials applied adhesive bonding is also affected by fiber orientation and thickness of bamboo natural fiber layer. There for, Fiber orientation of bamboo natural fiber layer have a great effect on the tensile-shear strength of natural fiber reinforced composites including adhesive bonded joints.

Structural Performance Improvement of Composite Plates By Using Curvilinear Fiber Format (곡선섬유를 이용한 복합재료 평판의 구조적 성능 향상)

  • 이호영
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.31-42
    • /
    • 1999
  • In aerospace industry, the improvement of structural performance of fight structure without increasing weight has great advantage. In this study. an innovative design method to increase the buckling load and tension failure load at the same time without increasing the weight of composite plates was investigated. By using the curvilinear fiber format a method to increase the buckling load and tension failure load simultaneously was investigated for composite plates with central hole with finite element method. It was investigated how much gain can be obtained with curvilinear fiber format for the plates with different hole size and different stacking sequence. And, for the cases studied, the failure mechanism was also investigated. For the manufacturing of the curvilinear fiber format, smoothly and continuously changing fiber path is necessary. In this study, a simple method to find the smoothly changing fiber path by using the fiber angles obtained with finite element method was presented.

  • PDF

Shear Failure Behaviour of Reinforced Concrete Deep Beam Strengthened by Carbon Fiber Sheets (탄소섬유시트로 보강된 춤이 큰 철근콘크리트 보의 전단파괴거동(剪斷破壞擧動))

  • Cho, Su-Je;Son, Sung-Hun;Park, Sung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.4
    • /
    • pp.145-153
    • /
    • 1999
  • The major objective of this study is to investigate experimentally the shear strengthening effect of carbon fiber sheets upon reinforced concrete deep beam and shear failure behavior variation of reinforced concrete deep beam strengthened by carbon fiber sheets. Tests are carried out with 6 specimens were shear failure at first loading tests, and with parameters including the types of shear strengthening of carbon fiber sheets (I type, S type, U type), and plies of sheets (2 ply and 1 ply). From the results of test, analyzed load-deflection of midspan, strain variation of main bars and transverse reinforcement, maximum load capacity of strengthened specimens, and compared with the previous test results.

  • PDF

Flexural Behavior of Reinforced Concrete Beams Strengthened with Grid-typs Carbon Fiber Plastics (탄소격자섬유로 보강한 철근 콘크리트보의 휨파괴 특성에 관한 연구)

  • 태기호
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.52-59
    • /
    • 2000
  • Flexural fracture characteristics of newly-developed Grid-type carbon fiber plastics in the deteriorated reinforced concrete structures were investigated by the four-points fracture test to verify the strengthening effects in the beam specimens. Results showed that initial cracks appeared in the boundary layers of fibers embedded in the newly-placed mortar concrete slowly progressed to the direction of supports and showed fracture of fiber plastics and brittle failure of concrete in compression in sequence after the yielding of steel reinforcement. Accordingly the reasonable area of Grid-type carbon-fiber plastics in the strengthening design of deteriorated RC structures should be limited and given based on the ultimate strength design method to avoid the brittle failure of concrete structures.

  • PDF

An Experimental Study on the Hysteretic Capacity Evaluation of the Shear-Strengthened RC Column with Carbon Fiber Sheet (탄소섬유쉬트로 전단보강한 RC 기둥의 이력성능평가에 관한 실험적 연구)

  • 이현호;구은숙
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.750-755
    • /
    • 1999
  • When the RC frame structures subjected to the seismic load, brittle shear failure of vertical members induces brittle collapse of whole structures. Failure mechanism like this is not desirable. So shear strengthening method to avoid this failure mechanism is needed. Recently, strengthening method using continuous fiber sheet is studied and used widely which have high elastic and high strength characteristics. In this study, RC columns which is strengthened by carbon fiber sheet in the form of tape or whole sheet were tested under the cyclic load. The parameter of this test is the amount of strengthening. As the amount of strengthening increase, strength, ductility and energy capacity increase. The failure mode of test results are shear and bond-split failure.

  • PDF

A Study on Microfailure Mechanism of Single-Fiber Composites using Tensile/Compressive Broutman Fragmentation Techniques and Acoustic Emission (인장/압축 Broutman Fragmentation시험법과 음향방출을 이용한 단섬유 복합재료의 미세파괴 메커니즘의 연구)

  • Park, Joung-Man;Kim, Jin-Won;Yoon, Dong-Jin
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.54-66
    • /
    • 2000
  • Interfacial and microfailure properties of carbon fiber/epoxy matrix composites were evaluated using both tensile fragmentation and compressive Broutman tests with an aid of acoustic emission (AE) monitoring. A polymeric maleic anhydride coupling agent and a monomeric amino-silane coupling agent were used via the electrodeposition (ED) and the dipping applications, respectively. Both coupling agents exhibited significant improvements in interfacial shear strength (IFSS) compared to the untreated case under tensile and compressive tests. The typical microfailure modes including fiber break of cone-shape, matrix cracking, and partial interlayer failure were observed during tensile test, whereas the diagonal slippage in fiber ends was observed under compressive test. For both loading types, fiber breaks occurred around just before and after yielding point. In both the untreated and treated cases AE amplitudes were separately distributed for the tensile testing, whereas they were closely distributed for the compressive tests. It is because of the difference in failure energies of carbon fiber between tensile and compressive loading. The maximum AE voltage for the waveform of carbon or basalt fiber breakages under tensile tests exhibited much larger than those under compressive tests, which can provide the difference in the failure energy of the individual failure processes.

  • PDF

A Study on the Impact Fracture Behavior of Glass Fiber Polypropylene Composites (GF/PP 복합재료의 충격파괴거동에 관한 연구)

  • 엄윤성
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.4
    • /
    • pp.421-427
    • /
    • 1999
  • The critical fracture energy and failure mechanisms of GF/PP composites are investigated in the temperatures range of the ambient temperature to $-50^{\circ}C$ The critical fracture energy increase as fiber volume fraction ratio increased The critical fracture energy shows a maximum at ambient temperature and it tends to decrease as temperature goes up. Major failure mechanisms can be classfied such as fiber matrix debonding, fiber pull-out and/or delamination and matrix deformation.

  • PDF