• Title/Summary/Keyword: Fiber diameter

Search Result 800, Processing Time 0.033 seconds

Capillary Flow in Different Cells of Metasequoia glyptostroboides, Anthocephalus cadamba, and Fraxinus rhynchophylla (메타세콰이어, 카담, 물푸레나무 세포내강의 액체이동)

  • Chun, Su Kyoung
    • Journal of the Korea Furniture Society
    • /
    • v.29 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • A study was carried out to observe the 1% aqueous safranine solution flow speed in longitudinal and radial directions of softwood Metasequoia glyptostroboides, diffuse-porous wood Anthocephalus cadamba and ring-porouswood Fraxinus rhynchophylla. In radial direction, ray cells and in longitudinal direction, tracheids, vessel and wood fiber were considered for the measurement of liquid penetration speed at less than 12% moisture contents (MC). The length, lumen diameter, pit diameter, end wall pit diameter and the numbers of end wall pits determined for the flow rate. The liquid flow in the those cells was captured via video and the capillary flow rate in the ones were measured. Vessel in hardwood species and tracheids in softwood was found to facilitate prime role in longitudinal penetration. Anatomical features like the length and diameter, end-wall pit numbers of ray parenchyma were found also responsible fluid flow differences. On the other hand, vessel and fiber structure affected the longitudinal flow of liquids. Therefore, the average liquid penetration depth in longitudinal tracheids of Metasequoia glyptostroboides was found the highest among all cells considered in Anthocephalus cadamba and Fraxinus rhynchophylla In radial direction, ray parenchyma of Metasequoia glyptostroboides was found the highest depth and the one of Fraxinus rhynchophylla was the lowest. The solution was penetrated lowest depth in the wood fiber of Fraxinus rhynchophylla. The large vessel of Fraxinus rhynchophylla was found the lowest depth among the vessels. The solutin was penetrated to the wood fiber of Anthocephalus cadamba higher than the one of Fraxinus rhynchophylla.

  • PDF

Capillary Flow in Different Cells of Larix Kaempferi, Betula Davurica, Castanea crenata (일본잎갈나무, 물박달나무, 밤나무 세포내강의 액체이동)

  • Chun, Su Kyoung
    • Journal of the Korea Furniture Society
    • /
    • v.28 no.1
    • /
    • pp.88-93
    • /
    • 2017
  • A study was carried out to observe the 1% aqueous safranine solution flow speed in longitudinal and radial directions of softwood Larix kaempferi (Lamb.)Carriere, diffuse-porous wood Betula davurica Pall.. and ring-porouswood Castanea crenata S.etZ. In radial direction, ray cells and in longitudinal direction, tracheids, vessel and wood fiber were considered for the measurement of liquid penetration speed at less than 12% moisture contents (MC). The length, lumen diameter, pit diameter, end wall pit diameter and the numbers of end wall pits determined for the flow rate. The liquid flow in the those cells was captured via video and the capillary flow rate in the ones were measured. Vessel in hardwood species and tracheids in softwood was found to facilitate prime role in longitudinal penetration. Anatomical features like the length and diameter, end-wall pit numbers of ray parenchyma were found also responsible fluid flow differences. On the other hand, vessel and fiber structure affected the longitudinal flow of liquids. Therefore, the average liquid penetration depth in longitudinal tracheids of Larix kaempferi was found the highest among all cells considered in Betula davurica and Castanea crenata, In radial direction, ray parenchyma of Larix kaempferi was found the highest depth and the one of Betula davurica was the lowest. The solution was penetrated lowest depth in the wood fiber of Castanea crenata. The large vessel of Castanea crenata was found the lowest depth among the vessels. The solutin was penetrated to the wood fiber of Betula davurica higher than the one of Castanea crenata.

Morphological Analysis of the Myelinated Parent Axons that Innervate Rat Upper Molar Pulps in the Trigeminal Ganglion

  • Paik, Sang Kyoo;Kim, Jong Ho;Kim, Tae Heon;Bae, Yong Chul
    • International Journal of Oral Biology
    • /
    • v.40 no.4
    • /
    • pp.175-182
    • /
    • 2015
  • Previous studies suggested that myelinated axons innervating rat molar pulps undergo morphological changes in their peripheral course. However, little information is available on the morphological feature of the parent axons at the site of origin. We therefore investigated the size of the myelinated parent axons and their morphological features at the proximal sensory root of the trigeminal ganglion by horseradish peroxidase (HRP) injection into rat upper molar pulps and subsequent light and electron microscopy. A total of 248 HRP-labeled myelinated axons investigated were highly variable in the size. Fiber area, fiber diameter, axon area (axoplasm area), axon diameter (axoplasm diameter), and myelin thickness were $11.32{\pm}8.36{\mu}m^2(0.80{\sim}53.17{\mu}m^2)$, $3.99{\pm}1.53{\mu}m(1.08{\sim}9.26{\mu}m)$, $8.70{\pm}6.30{\mu}m^2(0.70{\sim}41.83{\mu}m^2)$, $3.13{\pm}1.13{\mu}m(0.94{\sim}7.20{\mu}m)$ and $0.43{\pm}0.23{\mu}m(0.07{\sim}1.06{\mu}m)$, respectively. The g-ratio (axon diameter / fiber diameter) of the labeled axons was $0.79{\pm}0.05$ (0.61~0.91). Axon diameter was highly correlated with myelin thickness (correlation coefficients, r=0.83) but little correlated with g-ratio (r=-0.33) of individual myelinated parent axons. These results indicate that myelin thickness of the myelinated parent axons innervating rat molar pulps increase with increasing axon diameter, thus maintaining a constant g-ratio.

Synthesis and Characterization of Lead Zirconium Titanate Nanofibers by Electrospinnig

  • Choe, Su-Jin;Park, Ju-Yeon;Go, Seong-Wi;Gang, Yong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.189.1-189.1
    • /
    • 2014
  • Lead zirconium titanate (PZT) is usually used as bulk and thin films. Due to high flexibility and piezoelectric, ferroelectric and pyroelectric properties, PZT fiber has attracted in a variety of fields such as sensor devices, non-electromechanical systems and non-volatile ferroelectric memory devices. And PZT fiber can be numerously synthesized and almost with the diameter of PZT fiber thicker than $10{\mu}m$. However, the electrospinnig method is cost effective and convenient. PZT obtained by electrospinning methodhas the diameter from sub-micro to nanometer. In this paper, the PZT/PVP nanofibers were synthesized with three precursors, lead nitrate, zirconium ethoxide and titanium isopropoxide. And the PZT nanofibers were fabricated after removal of PVP by annealing process at various temperature. The obtained PZT nanofibers were characterized by means of X-ray photoelectron spectroscopy (XPS) for chemical properties, X-ray diffraction (XRD) for crystallinity and phase, scanning electron microscopy (SEM) for morphologies. The diameter of PZT nanofibers were measured with SEM. From the SEM images, we confirmed that diameter of PZT nanofibers was hundreds of nanometers and decreased with increasing the annealing temperature. When the annealing temperature increased, the crystallinity of PZT nanofibers changed from pyrochlore to perovskite structure.

  • PDF

Capillary Flow in Different Cells of Ginkgo Biloba, Diospyros Kaki and Ailanthus Altissima (은행나무, 감나무, 가중나무 세포내강의 액체이동)

  • Chun, Su Kyoung
    • Journal of the Korea Furniture Society
    • /
    • v.26 no.2
    • /
    • pp.179-185
    • /
    • 2015
  • A study was carried out to observe the 1% aqueous safranine solution flow speed in longitudinal and radial directions of softwood G. biloba, ring-porous wood A. altissima, and diffuse- porouswood D. kaki. In radial direction, ray cells and in longitudinal direction tracheids, vessel and wood fiber were considered for the measurement of liquid penetration speed at less than 12% moisture contents (MC). The length, lumen diameter, pit diameter, end wall pit diameter and the numbers of end wall pits determined for the flow rate. The liquid flow in the those cells was captured via video and the capillary flow rate in the ones were measured. Vessel in hardwood species and tracheids in softwood was found to facilitate prime role in longitudinal penetration. Radial flow speed was found highest in ray parenchyma of G. biloba. Anatomical features like the length and diameter, end-wall pit numbers of ray parenchyma were found also responsible fluid flow differences. On the other hand, vessel and fiber structure affected the longitudinal flow of liquids. Therefore, the average liquid penetration depth in longitudinal tracheids of G. biloba was found the highest among all cells considered in D. kaki and A. altissima.

Influence of airborne-particle abrasion on flexural strength of fiber-reinforced composite post (미세입자 분사마모 표면처리가 Fiber-Reinforced Composite 포스트의 굴곡 강도에 미치는 영향)

  • Sim, Eun-Ju;Kim, Jin-Woo;Cho, Kyung-Mo;Park, Se-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.1
    • /
    • pp.24-31
    • /
    • 2016
  • Purpose: Many studies have shown that airborne-particle abrasion of fiber post can improve the bonding strength to resin cement. But, airborne-particle abrasion may influence the property of fiber post. The purpose of this study is to evaluate the influence of airborne-particle abrasion on flexural strength of fiber post. Materials and Methods: Two fiber-reinforced posts; DT Light Post Size 2 (1.8 mm diameter, Bisco Inc) and RelyX Fiber Post Size 3 (1.9 mm diameter, 3M ESPE); were used in this study. Each group was divided into 3 subgroups according to different surface treatments; without pretreatment: $50{\mu}m$ aluminum oxide (Cobra$^{(R)}$, Renfert): and $30{\mu}m$ aluminum oxide modified with silica (Rocatec Soft$^{(R)}$, 3M ESPE). After airborne-particle abrasion procedure, three-point bending test was done to determine the flexural strength and flexural modulus. The diameter of each posts was measured to an accuracy of 0.01 mm using a digital micrometer. There was no diameter change before and after airborneparticle abrasion. The mean flexural moduli and flexural strengths calculated using the appropriate equations. The results were statistically analyzed using One-way ANOVA and Scheffe's post-hoc test at 95% confidencial level. Results: There was no significant difference on flexural strength between groups. Conclusion: In the limitation of this study, flexural strength and flexural modulus of fiber post are not affected by airborne-particle abrasion.

Quality and Sensory Characteristics of Reduced-fat Chicken Patties with Pork Back Fat Replaced by Dietary Fiber from Wheat Sprout

  • Choi, Yun-Sang;Sung, Jung-Min;Park, Jong-Dae;Hwang, Ko-Eun;Lee, Cheol-Won;Kim, Tae-Kyung;Jeon, Ki-Hong;Kim, Cheon-Jei;Kim, Young-Boong
    • Food Science of Animal Resources
    • /
    • v.36 no.6
    • /
    • pp.799-806
    • /
    • 2016
  • The effects of reducing pork fat levels from 20% to 15% or 10% by partially substituting pork back fat with wheat sprout fiber in reduced-fat chicken patties were investigated. Approximate composition, energy value, pH, color, cooking loss, reduction in diameter, reduction in thickness, shear force, and sensory properties were determined. Moisture content, ash contents, yellowness of uncooked and cooked reduced-fat chicken patties with wheat sprout were higher than those in the control, while displaying fat content, calorie content, and pH of uncooked and cooked lower in reduced-fat chicken patties than in the control. Cooking loss, reduction in diameter, and reduction in thickness were the highest in the reduced-fat chicken patties with 10% fat level. Cooking loss, reduction in diameter, and reduction in thickness were decreased when fat levels and wheat sprout levels were increased. Control samples without wheat sprout dietary fiber had significantly (p<0.05) higher color and flavor scores compared to reduced-fat chicken patties containing wheat sprout dietary fiber. The overall acceptability of the control and treatment with 15% fat and 2% wheat sprout dietary fiber (T3) was the highest. Therefore, 15% fat level in reduced-fat chicken patties with the addition of 2% wheat sprout dietary fiber can be used to improve the quality and sensory characteristics of regular-fat chicken patties containing 20% fat level.

Flow-Dependent Friction Loss in an Implantable Artificial Lung

  • Lee, Sam-Cheol
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1470-1476
    • /
    • 2002
  • The goal of this work is to design and build an implantable artificial lung that can be inserted as a whole into a large vein in the body with the least effect on cardiovascular hemodynamics. The experimental results demonstrate that the pressure drop is not entirely related to viscosity effects. The friction factor decreases with an increase in the number of tied-hollow fibers at a constant Reynolds number A uniform flow pattern without stagnation is observed at all numbers of tied hollow fibers tested. The tied hollow fiber module, built in this study with 3 cm of outer diameter of module. 380 m of outer diameter of tied hollow fiber, and 700 number of tied hollow fiber with length of 60 cm, which shows a pressure drop of 13-16 mmHg, satisfies the required pressure drop qualifying 15 mmHg as an intravascular artificial lung.

Effect of fiber geometry on the electromagnetic shielding performance of mortar

  • Kim, Young Jun;Yemam, Dinberu M.;Kim, Baek-Joong;Yi, Chongku
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.281-294
    • /
    • 2016
  • The increased awareness of electromagnetic wave hazards has prompted studies on electromagnetic shielding using conductive materials in the construction industry. Previous studies have explored the effects of the types of conductive materials and their mix proportions on the electromagnetic shielding performance; however, there has been insufficient research on the effect of the geometry of the conductive materials on the electromagnetic shielding performance. Therefore, in this study, the dependence of the electromagnetic shielding performance on the cross-sectional geometry, diameter and length of fibers was investigated. The results showed that the electromagnetic shielding performance improved when the fiber length increased or the diameter decreased, but the effect of the cross-sectional geometry of the fibers was smaller than the effect of the fiber spacing factor.

An Evaluation of Coarse Aggregate Mixed Effect on Impact Resistance of Fiber Reinforced Cement-Based Material (섬유보강 시멘트 기반 재료의 내충격 성능에 미치는 굵은 골재 혼입 영향 평가)

  • Lee, Eun-Jin;Kim, Gyu-Yong;Kim, Hong-Seop;Lee, Sang-Gyu;Son, Min-Jae;Yoon, Min-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.37-38
    • /
    • 2016
  • In this study, it evaluate the coarse aggregate mixed effect to impact resistance performance of the fiber reinforced cement-based material. The type of fiber is Hooked-ended steel fiber, and mixed 1vol.% in concrete and cement composites. The impact experiment was conducted by using a spherical shape projectile diameter of 25mm to 170m/s speed and Impact resistance performance was evaluated by measuring the fracture grade, fracture diameter and depth.

  • PDF