• Title/Summary/Keyword: Fiber components

Search Result 906, Processing Time 0.032 seconds

A Study on Machining of A V-groove on the Optical Fiber Connector Using a Miniaturized Machine Tool (소형공작기계를 이용한 광커넥터용 V 홈 가공에 관한 연구)

  • 이재하;박성령;양승한;이영문
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.38-45
    • /
    • 2004
  • As optical communication is being substituted for telecommunication, the demand of a large variety of fiber optic components is increasing. V-groove substrates, one of the module components, are used to connect optical fibers to optical planar circuits and to arrange fibers. Their applications are multi-channel optical connectors and optical waveguide fiber coupling, etc. Because these substrates are a critical part of the splitter in a multiplexer and a multi fiber connector, precise and reliable fabrication process is required. For precisely aligning core pitch between fibers, machined core pitch tolerance should be within sub-microns. Therefore, these are generally produced by state-of-the-art micro-fabrication like MEMS. However, most of the process equipment is very expensive. It is also difficult to change the process line for custom designs to meet specific requirements using various materials. For various design specifications such as different values of the V angle and low-priced process, the fabrication method should be flexible and low cost. To achieve this goal, we have suggested a miniaturized machine tool with high accuracy positioning system. Through this study, it is shown that this cutting process can be applied to produce V-groove subtracts. We also show the possibility of using a miniaturized machining system for producing small parts.

Microstructures and Textures of Electrodeposited Ni/Invar Bimetal (전주도금으로 제조된 Ni/Invar 바이메탈의 미세조직과 집합조직)

  • Kang, Ji Hoon;Seo, Jeong Ho;Park, Yong Bum
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.7
    • /
    • pp.420-426
    • /
    • 2008
  • By using electrodeposition, we developed a new method to produce Ni/Invar bimetal sheets, which have been used for the present study to investigate the texture evolution during annealing. The grains of electrodeposited Ni were columnar, while those of electrodeposited Fe-Ni alloy were nanocrystalline. These different parts of the bimetal underwent different evolution of textures and microstructures during annealing. In the nanocrystalline Invar, the as-deposited textures were of fiber-type characterized by strong <100>//ND and weak <111>//ND components, and the occurrence of grain growth resulted in the strong development of the <111>//ND fiber texture with the minor <100> // ND components. On the other hand, in the columnar-structured Ni part, the as-deposited <110>//ND fiber texture transformed to the <112>//ND fiber texture due to recrystallization occurring above $550^{\circ}C$. The development of microtextures which took place during annealing in the Ni/Invar interfacial regions was investigated by using the OIM analysis, and discussed in terms of the effect of atomic diffusion across the interfaces.

Mechanical Properties and Wind Energy Harvesting Characteristics of PZT-Based Piezoelectric Ceramic Fiber Composites (PZT계 압전 세라믹 파이버 복합체의 기계적 물성과 압전 풍력 에너지 하베스팅 특성)

  • Lee, Min-Seon;Park, Jin-woo;Jeong, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.90-98
    • /
    • 2021
  • Piezoelectric ceramic fiber composite (PCFC) was fabricated using a planar electrode printed piezoelectric ceramic fiber driven in transverse mode for small-scale wind energy harvester applications. The PCFC consisted of an epoxy matrix material and piezoelectric ceramic fibers sandwiched by interdigitated electrode (IDE) patterned polyimide films. The PCFC showed an excellent mechanical performance under a continuous stress. For the fabrication of PCB cantilever harvester, five -PCFCs were vertically attached onto a flexible printed circuit board (PCB) substrate, and then PCFCs were serially connected through a printed Cu circuit. The energy harvesting performance was evaluated applying an inverted structure, which imples its free leading edge located at an open end but the trailing edge at a clamped end, to enhance strain energy in a wind tunnel. The output voltage of the PCB cantilever harvester was increased as the wind speed increased. The maximum output power was 17.2 ㎼ at a resistance load of 200 ㏀ and wind speed of 9 m/s. It is considered that the PCB cantilever energy harvester reveals a potential use for wind energy harvester applications.

Creation of Bio-Inspired Fiber Materials and Their Biodegradation

  • Ohkawa, Kousaku;Yamamoto, Hiroyuki
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.43-44
    • /
    • 2003
  • The new method for preparing hybrid fibers from aqueous solution is described. The method is based on interfacial polyionic complexation between the counter-charged polymers. Polysaccharides, chitosan and gellan, and polypeptides, poly(L-lysine) and poly(L-glutamic acid) were utilized as the components of the fibers. The chitosan-gellan and poly(L-lysine)-gellan hybrid fibers exhibited a high level biodegradability.

  • PDF

Development of Antimicrobial and Deodorizing Cellulose Fiber (항균방취 셀룰로오스섬유 제조에 관한 연구)

  • 홍영근
    • Textile Coloration and Finishing
    • /
    • v.10 no.1
    • /
    • pp.38-42
    • /
    • 1998
  • Both cellulose and chitin together were dissolved in DMAc/LiCl and these solutions were extruded into coagulant of $DMAc/H_2O$. Fibers thus obtained were treated in NaOH aqueous solution. Results showed that the fiber surface contains celluose and chitosan. This means that these fibers treated are composed of three components, ie, cellulose, chitin, and chitosan. These fiber showed secure antibacterial and mechanical properties.

  • PDF

광섬유를 이용한 컬러TV신호 3채널의 주파수 분할 다중 전송시험

  • Yu, Gang-Hui;Seo, Wan-Seok;Gang, Min-Ho
    • ETRI Journal
    • /
    • v.6 no.4
    • /
    • pp.3-8
    • /
    • 1984
  • Frequency division multiplexed 3ch. Color TV signals have been transmitted via optical fiber by employing $1. 3\mum$ InGaAsP DH-laser diode, graded index optical fiber and Ge-APD as optical components. Overall system margin of 20 dB was realized at weighted SNR of more than 49 dB. With this system margin, measured DG and DP were less than 10% and $5^{\circ}$respectively. Throughout this experiment, it was confirmed that multichannel TV signals could be economically transmitted over optical fiber in short haul networks. This paper describes system outlines and hardware implementation results.

  • PDF

Effect of basalt fibers on fracture energy and mechanical properties of HSC

  • Arslan, Mehmet E.
    • Computers and Concrete
    • /
    • v.17 no.4
    • /
    • pp.553-566
    • /
    • 2016
  • Fracture energy is one of the key parameters reveal cracking resistance and fracture toughness of concrete. The main purpose of this study is to determine fracture behavior, mechanical properties and microstructural analysis of high strength basalt fiber reinforced concrete (HSFRC). For this purpose, three-point bending tests were performed on notched beams produced using HSFRCs with 12 mm and 24mm fiber length and 1, 2 and $3kg/m^3$ fiber content in order to determine the value of fracture energy. Fracture energies of the notched beam specimens were calculated by analyzing load versus crack mouth opining displacement curves by the help of RILEM proposal. The results show that the effects of basalt fiber content and fiber length on fracture energy are very significant. The splitting tensile and flexural strength of HSFRC increased with increasing fiber content whereas a slight drop in flexural strength was observed for the mixture with 24mm fiber length and $3kg/m^3$ fiber content. On the other hand, there was no significant effect of fiber addition on the compressive strength and modulus of elasticity of the mixtures. In addition, microstructural analysis of the three components; cement paste, aggregate and basalt fiber were performed based on the Scanning Electron Microscopy and Energy-Dispersive X-ray Spectroscopy examinations.

Conversion Process of Amorphous Si-Al-C-O Fiber into Nearly Stoichiometric SiC Polycrystalline Fiber

  • Usukawa, Ryutaro;Oda, Hiroshi;Ishikawa, Toshihiro
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.610-614
    • /
    • 2016
  • Tyranno SA (SiC-polycrystalline fiber, Ube Industries Ltd.) shows excellent heat-resistance up to $2000^{\circ}C$ with relatively high mechanical strength. This fiber is produced by the conversion process from a raw material (amorphous Si-Al-C-O fiber) into SiC-polycrystalline fiber at very high temperatures over $1500^{\circ}C$ in argon. In this conversion process, the degradation reaction of the amorphous Si-Al-C-O fiber accompanied by a release of CO gas for obtaining a stoichiometric composition and the subsequent sintering of the degraded fiber proceed. Furthermore, vaporization of gaseous SiO, phase transformation and active diffusion of the components of the Si-Al-C-O fiber competitively occur. Of these changes, vaporization of the gaseous SiO during the conversion process results in an abnormal SiC-grain growth and also leads to the non-stoichiometric composition. However, using a modified Si-Al-C-O fiber with an oxygen-rich surface, vaporization of the gaseous SiO was effectively prevented, and then consequently a nearly stoichiometric SiC composition could be obtained.

Microstructuring of Optical Fibers Using a Femtosecond Laser

  • Sohn, Ik-Bu;Kim, Young-Seop;Noh, Young-Chul;Ryu, Jin-Chang;Kim, Jin-Tae
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.33-36
    • /
    • 2009
  • Laser ablation with femtosecond lasers is highly promising for microfabrication of materials. Also, the high peak power of femtosecond lasers could induce a multiphoton absorption to ablate transparent materials. Similar results have also been were obtained in the case of optical fibers. In this paper, we present our experimental results of femtosecond laser microstructuring of optical fiber and its applications to microelectronic components and fiber optic devices. Finally, we directly produced micro holes with femtosecond laser pulses in a single step by moving an optical fiber in a preprogrammed structure. When water was introduced into a hole drilled from the bottom surface of the optical fiber, the effects of blocking and redeposition of ablated material were greatly reduced and the aspect ratio of the depth of the hole was increased. We have presented circular and rectangular-shaped holes in optical fiber.

Development of 50m Class Airship Structures (복합재를 이용한 50m급 비행선 구조개발)

  • 양남선;강왕구;김동민;이진우;염찬홍
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.127-131
    • /
    • 2003
  • KARI developed 50m class unmanned airship. The airship employ the pressure envelope design principle. The envelope must be considered as a main structural element of the airship. The envelope & three ballonets are fabricated by polyfiber composite laminates. Other structural components (gondola, tailwing, nosecone & engine mounts) are manufactured by carbon fiber & glass fiber laminates. In order to develop a big unmanned airship, a large amount of structural design, analysis and tests had to be made. The paper describes the structural configuration of the 50m class uumanned airship which are basic starting point of the structural development of an airship. The paper includes the various designing processes, components development tests and analysis results. Envelope & ballonets development processes which are very different to conventional airplane design are given in details with actual analysis & test results. The paper also describes the structural design and analysis results for other composite made structures. Each components were tested by static design limit loads and structural safety were confirmed. The paper shows the manufactured structural components and assembled airship.

  • PDF