• Title/Summary/Keyword: Fiber blending ratio

Search Result 37, Processing Time 0.023 seconds

Evaluation of the Texture Image and Preference according to Wool Fiber Blending Ratios and the Characteristics of Men's Suit Fabrics (모섬유의 혼방비율과 직물 특성에 따른 남성 정장용 소재의 질감이미지와 선호도 평가)

  • Kim, Hee-Sook;Na, Mi-Hee
    • Korean Journal of Human Ecology
    • /
    • v.20 no.2
    • /
    • pp.413-426
    • /
    • 2011
  • This research was designed to compare the subjective evaluation of texture image and preference according to fiber blending ratio of men's suit fabrics. 110 subjects evaluated the texture image and preference of various fabrics. For statistical analysis, factor analysis, MDS, pearson correlation and ANOVA were used. The results were as follows: Sensory image factors of suit fabrics were 'smoothness', 'bulkiness', 'stiffness', 'elasticity', 'moistness' and 'weight sensation'. Sensibility image factors were 'classic', 'practical', 'characteristic' and 'sophisticated'. 'Bulkiness' and 'elasticity' sensory images showed high correlations with sensibility images. Fabrics with high wool blending ratio showed as 'classic' and 'sophisticated', 'bulkiness' and 'elasticity' texture images and fabrics with low wool blending ratio showed texture images of 'characteristic', 'surface character', 'stiffness', 'moistness' and 'weight sensation'. Wool fiber blending ratio affected on the purchase preference and tactile preference. Using regression analysis, it was shown that sensibility images had more of an effect on preference than sensory images. The thickness and pattern type showed positive effects and fiber blending ratio showed negative effects on the preference.

Study on the Synthesis of Wool-blending Fiber Bundle and New Signs of the Curve

  • Ren Yonghua;Yu Jianyong
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.339-342
    • /
    • 2005
  • In this paper, a hand-operating method (tiled test method) of the wool-blending sample is made out, and make use of the method, the test of wool-blending bundle in different blending ratio is accomplished. According to the test data, the synthesis method of the stretch curve is worked out and the synthesis software for the typical stretch curve of wool-blending bundle is designed. Through laboratory hand-operating method, the blending fasciculus applying to fiber bundle test can be obtained in a short time. Calculation for sampling is accomplished in the article. We bring up 9 new signs to describe the characteristics of the curve behind peak for the first time: elongation behind peak (HE), elongation percentage behind peak (HEP), relative elongation rate behind peak (RHE), total break work $(W_a)$, break work behind peak (HW), break work coefficient behind peak (HWC), elongation percentage of half-load behind peak (HEL), load percentage of half-elongation behind peak (HLE), break efficiency behind peak (HEC).

Fiber blending Ratio Effect on Tensile Properties of Hybrid Fiber Reinforced Cement-based Composites under High Strain Rate (고변형속도 조건에서 섬유 혼합비가 하이브리드 섬유보강 시멘트복합체의 인장특성에 미치는 영향)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Bo-Kyeong;Lee, Sang-Kyu;Kim, Gyeong-Tae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.147-148
    • /
    • 2017
  • In this study, the tensile properties of mono and hybrid fiber reinforced cement-based composite according to fiber blending ratio under the high strain rate was evaluated. Experimental results, the HSF1.5PVA0.5 shown the highest tensile strength because the PVA fiber suppressed the micro cracks in the matrix around the hooked steel fiber and improved the pull-out resistance of hooked steel fiber. Thus, DIF of strain capacity and fracture toughness of HSF1.5PVA were greatly improved. Also, the fracture toughness was greatly improved because the tensile stress was slowly decreased after the peak stress by improvement of the pull-out resistance of hooked steel fiber at strain rate 101/s.

  • PDF

Preparation and Characterization of Lignin/Chlorinated Polyvinyl Chloride Blended Fibers for Low-cost Carbon Fiber (저가 탄소섬유용 Lignin/Chlorinated Polyvinyl Chloride 블렌딩 섬유의 제조 및 특성)

  • Jo, Chaehyun;Lee, Sangoh;Kang, Dakyung;Hong, Seonghwa;Kang, Chankyu;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.32 no.2
    • /
    • pp.111-120
    • /
    • 2020
  • In this study, lignin/chlorinated poly(vinyl chloride)(CPVC) blended fibers have been produced for the development of low-cost carbon fiber. Carbon fiber manufacturing was accomplished through stabilization and carbonization process. The lignin/CPVC blended fibers were prepared by wet spinning method. Dimethylacetamid e(DMAc) and cychlohexanone in a ratio of 5:1(wt%) was employed as co-solvent. The ratio of lignin/CPVC was prepared at 0/10, 1/9, 2/8, 3/7, 4/6, and 5/5(wt%). The spinning solution was extruded at a rate of 0.1 to 0.4ml/min according to the blending ratio. The speed of the rollers was the same for all ratios(draw ratio=1). Analysis of fiber cross-section by scanning eletron microscopy(SEM) showed that as the lignin ratio increased in the same coagulation bath and distilled water, the pore size of the spinning fiber decreased. Therefore, the highest tensile strength of the blending fibers was 6.3±1.2MPa at the 5/5 ratio. The carbon fiber also showed the best tensile strength of 120.78±2.43MPa at 5/5 ratio.

Effect of Fiber Blending on Material Property of Hybrid Fiber Reinforced Concrete (섬유 혼입 비율에 따른 하이브리드 섬유보강 콘크리트의 재료특성)

  • Kim, Hag-Youn;Seo, Ki-Won;Lee, Wok-Jae;Kim, Nam-Ho;Park, Choon-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.345-348
    • /
    • 2004
  • In this study, an effect of fiber blending on material property of hybrid fiber reinforced concrete (HFRC) was evaluated. Also, optimized association and the mixing rate of fiber for HFRC was determined. Test result shows, in the case of mono fiber reinforced concrete, use of steel fiber in concrete caused increment in tensile and bending strength as the blended ratio increases, while use of carbon fiber and glass fiber caused increment in compressive strength. Use of hybrid fiber reinforcement in concrete caused a significant influence on its fracture behavior; consequently, caused increase by mixing rate of steel fiber and contributed by carbon fiber, glass fiber, celluloid fiber in reinforcement effect in order.

  • PDF

Improvement of mechanical properties of interior fabric using soluble micro-fiber and low melting PET (용출형 극세사와 저온 융착사를 이용한 인테리어 직물의 기계적 물성 개선)

  • Kwon, Yoon-Jung;Ahn, Young-Moo
    • Journal of Fashion Business
    • /
    • v.13 no.1
    • /
    • pp.82-90
    • /
    • 2009
  • This research was made to manufacture the fabric for interior uses by spinning a low melting mono 4 denier PET staple fiber with a soluble 1.4 denier fine PET fiber. The blended yarn has a thickness ranging from 10's to 14's, and the soluble PET fine fiber was dissolved to make a pore in the polymer. Thereby a snap property was decreased and a resilience property was improved to be suitable for a functional synthetic leather. In order to attain the optimum condition, a mechanical property according to fineness, and mixing ratio of low melting polymer, warp density, weft density and blending ratio, and a heat contraction ratio according to blending ratio were experimented. The warp density, 220 T/inch of fine denier PET and the weft density, 64 T/inch of thick denier PET were generated to 4/4 both twill weave fabric having constant tensile property and thickness.

Fibrillation in TLCP/Polyester Binary Blends

  • Kim, Jun-Young;Kim, Seong-Hun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.101-101
    • /
    • 2003
  • TLCP/Polyester binary blends were prepared by melt blending. Rheological, morphological, and thermal properties of of TLCP/polyester blends were investigated with viscosity ratio. Diameter of TLCP fibrils decreased with viscosity ratio. More and smaller TLCP fibrils were obtained at higher shear rate. Lower viscosity ratio was necessary for the fibrillation of TLCP in the binary blends.

  • PDF

Tensile Properties of Hybrid Fiber Reinforced Cement Composite according to the Hooked & Smooth Steel Fiber Blending Ratio and Strain Rate (후크형 및 스무스형 강섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장특성)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Sang-Kyu;Kim, Hong-Seop;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.31-39
    • /
    • 2021
  • In this study, the fiber blending ratio and strain rate effect on the tensile properties synergy effect of hybrid fiber reinforced cement composite was evaluated. Hooked steel fiber(HSF) and smooth steel fiber(SSF) were used for reinforcing fiber. The fiber blending ratio of HSF+SSF were 1.5+0.5, 1.0+1.0 and 0.5+1.5vol.%. As a results, in the cement composite(HSF2.0) reinforced with HSF, as the strain rate increases, the tensile stress sharply decreased after the peak stress because of the decrease in the number of straightened pull-out fibers by increase of micro cracks in the matrix around HSF. When 0.5 vol.% of SSF was mixed, the micro cracks was effectively controlled at the static rate, but it was not effective in controlling micro cracks and improving the pull-out resistance of HSF at the high rate. On the other hand, the specimen(HSF1.0SSF1.0) in which 1.0vol.% HSF and 1.0vol.% SSF were mixed, each fibers controls against micro and macro cracks, and SSF improves the pull-out resistance of HSF effectively. Thus, the fiber blending effect of the strain capacity and energy absorption capacity was significantly increased at the high rate, and it showed the highest dynamic increase factor of the tensile strength, strain capacity and peak toughness. On the other hand, the incorporation of 1.5 vol.% SSF increases the number of fibers in the matrix and improves the pull-out resistance of HSF, resulting in the highest fiber blending effect of tensile strength and softening toughness. But as a low volume fraction of HSF which controlling macro crack, it was not effective for synergy of strain capacity and peak toughness.

Studies on Deinking Properties of Recovered Paper for Manufacturing Eco-friendly Thermal Recording Paper (친환경 감열기록지 생산을 위한 순환제지자원의 탈묵 특성 연구)

  • Lee, Tai Ju;Choi, Do Chim;Kim, Moon Sung;Ryu, Jeong Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.6
    • /
    • pp.98-105
    • /
    • 2015
  • Demands of thermal recording paper have been increased significantly by increase in usage of invoice, fax, and label. Thermal recording paper was mainly made based on virgin fiber. It is necessary to find a suitable alternative to virgin fiber in terms of environment protectional resources conservation. In this paper, deinking properties of different recovered papers were analyzed in order to use the recovered paper as raw material of thermal recording paper. Recovered paper were ONP, OMG and white ledger. Flotation reject of OMG was high because inorganic pigments in coating layer could be removed by upstream of froth. Brightness of white ledger and OMG were much higher than that of ONP. Therefore, properties of pulp made from the recovered paper could be enhanced with increase in blending ratio of white ledger and OMG. However, blending ratio of OMG caused the increase of flotation reject. Consequently, the optimum blending ratio of ONP, OMG, and white ledger was 3:3:3 for eco-friendly thermal recording paper. Under the condition, brightness was about 70% and ERIC was below 300 ppm.