• Title/Summary/Keyword: Fiber architecture

Search Result 463, Processing Time 0.035 seconds

Influence of Ultrasonic Waves on the Stacking Orientation in Carbon Fiber/Epoxy Composite Laminates

  • Park, Je-Woong;Kim, Do-Jung;Hsu, David K.;Seo, Young-Hwan;Im, Kwang-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.8-13
    • /
    • 2008
  • In this study, an investigation of shear wave ultrasonic technique was carried out to detect stacking orientation error for CF/Epoxy quasi-isotropy composite laminates. The ultrasonic shear wave is particularly sensitive to ply orientation and layup sequence in tire CF/Epoxy composite laminates. In the manufacturing of composite laminates, it is important that layup errors be detected in samples. In this work, an effect was mack to develop shear wave techniques that can be applied to composite laminates. During testing, the mast significant problem is that the couplant conditions do not remain the same because of its changing viscosity. The design and use of a shear ware transducer would greatly alleviate the couplant problem. A pyramid of aluminum, with isosceles triangle (two 45o angles) sides, was made to generate shear waves, using two longitudinal transducers based on an ultrasonic-polarized mechanism. A signal splitter was connected to the pulser jack on a pulser/receiver and to the longitudinal transducers. The longitudinal transducers were mounted with mineral oil, and the shear transducer was mounted with burnt honey on the bottom as a receiver. The shear wave was generated at a maximum and a minimum based on the ultrasonic-polarized mechanism. Results show it is feasible to measure layup error using shear wave transducers on a stacking of prepregs in composites.

Development of TDMA-Based Protocol for Safety Networks in Nuclear Power Plants (원전 안전통신망을 위한 TDMA 기반의 프로토콜 개발)

  • Kim, Dong-Hoon;Park, Sung-Woo;Kim, Jung-Hun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.7
    • /
    • pp.303-312
    • /
    • 2006
  • This paper proposes the architecture and protocol of a data communication network for the safety system in nuclear power plants. First, we establish four design criteria with respect to determinability, reliability, separation and isolation, and verification/validation. Next we construct the architecture of the safety network for the following systems: PPS (Plant Protection System), ESF-CCS (Engineered Safety Features-Component Control System) and CPCS (Core Protection Calculator System). The safety network consists of 12 sub-networks and takes the form of a hierarchical star. Among 163 communication nodes are about 1600 origin-destination (OD) pairs created on their traffic demands. The OD pairs are allowed to exchange data only during the pre-assigned time slots. Finally, the communication protocol is designed in consideration of design factors for the safety network. The design factors include a network topology of star, fiber-optic transmission media, synchronous data transfer mode, point-to-point link configuration, and a periodic transmission schedule etc. The resulting protocol is the modification of IEEE 802.15.4 (LR-WPAN) MAC combined with IEEE 802.3 (Fast Ethernet) PHY. The MAC layer of IEEE 802.15.4 is simplified by eliminating some unnecessary (unctions. Most importantly, the optional TDMA-like scheme called the guaranteed time slot (GTS) is changed to be mandatory to guarantee the periodic data transfer. The proposed protocol is formally specified using the SDL. By performing simulations and validations using Telelogic Tau SDL Suite, we find that the proposed safety protocol fits well with the characteristics and the requirements of the safety system in nuclear power plants.

The Vascular Plant Species in Sogwang-ri, Uljin-gun (울진 소광리 일대의 관속식물상)

  • Shin, Hyun-Tak;Yi, Myung-Hoon;Yoon, Jung-Won
    • Korean Journal of Plant Resources
    • /
    • v.24 no.2
    • /
    • pp.214-235
    • /
    • 2011
  • The field survey to investigate the flora in Sogwang-ri, Uljin-gun, was carried out 10 times, from April 2009 to September 2010, and The results summarized as 430 taxa, 89 families, 253 genera, 367 species, 3 subspecies, 53 varieties, and 7 forms. Among these, 13 taxa were recorded as Korean endemic plant species and 11 taxa as rare plant species, which applied by the Korean Forest Service. Furthermore, 54 taxa were listed as specific plant species based on phytogeographical points of view and based on the list of those plants approved for delivery overseas, 17 taxa were recorded as such in the investigated area. There were 15 taxa identified as naturalized plants, and their naturalization ratio was found to be 3.4%. Among the 430 taxa, 178 taxa (40.9%) were categorized as edible plants, 145 taxa (33.7%) as medicinal plants, 114 taxa (26.5%) as pasture plants, 63 taxa (14.6%) as ornamental plants, 15 taxa (3.4%) as timber plants, 11 taxa (2.5%) as fiber plants, and 4 taxa (0.9%) as industrial plants.

Production & Performance Assessment of Composite Material Flexible Propeller (복합재료 유연 프로펠러의 제작 및 성능 평가)

  • Lee, Sang-Gab;Byun, Joon-Hyung;Paik, Bu-Geun;Hyun, Beom-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.667-674
    • /
    • 2009
  • The researches on the development of composite material underwater vehicle propeller have been actively attempted for the reduction of radiation noise with outstanding damping effects. Composite material propellers have almost been designed and produced by the foreign experts, and it is difficult to obtain the related informations about their flow, vibration, material characteristics because they are treated as the secrets with close relationship to the military technology, especially in the case of underwater vehicles. For the security of domestic manufacture of composite material propeller and the comparison and examination of its performance and radiation noise characteristics with those of German CONTUR composite material propeller, two propellers were self-produced according to the fiber weaving and array using compressible molding process and their self performances and radiation noise characteristics were measured. The mean fluctuations of blade tip of self-produced composite material propeller were increased and the radiation noises in the low frequency band were reduced compared to those of CONTUR, which could be estimated as the change of material characteristics and also be thought to be used for the future research informations.

Hysteretic Behavior Evaluation of Reinforced Concrete Columns Retrofitted with Iron-based Shape Memory Alloy Strips (철계 형상기억합금 스트립으로 보강된 콘크리트 기둥의 반복이력거동 평가)

  • Jeong, Saebyeok;Jung, Donghyuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.287-297
    • /
    • 2022
  • This paper presents experimental and analytical studies on the lateral cyclic behavior of RC columns actively confined with iron-based shape memory alloy (Fe-SMA) strips. Based on the Anexperimental study, we investigated the effectiveness of active confinement through compression testings of concrete cylinders confined by Fe SMA strips and carbon fiber-reinforced polymer (CFRP) sheets. The test results showed that the specimens confined with Fe SMA strips significantly increased the deformation capacity of the concrete, even under lower confining pressures, compared to those specimensconfined with CFRP sheets. The experimental results were used to develop finite-element models of RC columns confined with Fe SMA or CFRP in their plastic-hinge region. After validating the proposed analytical model through comparison with the results from a previous RC column test, a series of lateral cyclic load analyses were carried out for the RC columns confined with Fe SMA and CFRP. The analytical results revealed that the lateral cyclic behavior of the Fe SMA-confined column was greatly enhanced in terms of deformation and energy dissipation capacities compared with tothat of the as-built and CFRP-confined columns.

Silymarin attenuates escitalopram (cipralex) induced pancreatic injury in adult male albino rats: a biochemical, histological, and immunohistochemical approach

  • Rasha Mamdouh Salama;Sara Gamal Tayel
    • Anatomy and Cell Biology
    • /
    • v.56 no.1
    • /
    • pp.122-136
    • /
    • 2023
  • Depression is a prevalent global problem since ages, predominately treated with SSRI. Cipralex, is an antidepressant of the SSRIs class used as a remedy for mood, depression and anxiety. Silymarin (SIL), a natural free radical scavenging, has an antioxidant and anti-inflammatory properties. This hypothesis evaluates, for the first time, the role of cipralex on the structure of the endocrine and exocrine components of the pancreas and assess the beneficial effects of SIL on these changes. Forty-five rats were divided into control, cipralex, and cipralex plus SIL groups. During sacrifice, all rats and pancreases were weighed and the ratio of pancreatic weight (PW) to rat weight (RW) was calculated, blood samples were collected to estimate fasting glucose, insulin and amylase levels, the specimens were prepared for histological, immunohistochemical (inducible nitric oxide synthase [iNOS], tumour necrosis factor-alpha [TNF-α], caspase 3, proliferating cell nuclear antigen [PCNA], and anti-insulin antibody), and morphometrical studies. Cipralex group exhibited marked destruction of the pancreatic architecture of the exocrine and endocrine parts, with a dense collagen fiber deposition. Also, there is highly significant decrease (P<0.001) of PW/RT ratio, insulin, and amylase levels, the number and diameter of islets of Langerhans, the number of PCNA positive immunoreactive cells, and the number of insulin positive β-cells. Furthermore, a highly significant increase of glucose level, iNOS, TNF-α, and caspase-3 positive immunoreactive cells in the islets of Langerhans and acinar cells were observed. SIL improves the pancreatic histological architecture, weight loss, biochemical, and immunohistochemical analyses. Administering SIL is advantageous in managing cipralex induced pancreatic injury via its anti-inflammatory, antioxidant, and anti-apoptotic qualities.

Machine Learning-based Rapid Seismic Performance Evaluation for Seismically-deficient Reinforced Concrete Frame (기계학습 기반 지진 취약 철근콘크리트 골조에 대한 신속 내진성능 등급 예측모델 개발 연구)

  • Kang, TaeWook;Kang, Jaedo;Oh, Keunyeong;Shin, Jiuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.193-203
    • /
    • 2024
  • Existing reinforced concrete (RC) building frames constructed before the seismic design was applied have seismically deficient structural details, and buildings with such structural details show brittle behavior that is destroyed early due to low shear performance. Various reinforcement systems, such as fiber-reinforced polymer (FRP) jacketing systems, are being studied to reinforce the seismically deficient RC frames. Due to the step-by-step modeling and interpretation process, existing seismic performance assessment and reinforcement design of buildings consume an enormous amount of workforce and time. Various machine learning (ML) models were developed using input and output datasets for seismic loads and reinforcement details built through the finite element (FE) model developed in previous studies to overcome these shortcomings. To assess the performance of the seismic performance prediction models developed in this study, the mean squared error (MSE), R-square (R2), and residual of each model were compared. Overall, the applied ML was found to rapidly and effectively predict the seismic performance of buildings according to changes in load and reinforcement details without overfitting. In addition, the best-fit model for each seismic performance class was selected by analyzing the performance by class of the ML models.

A Numerical Model to Evaluate Fire-Resistant Capacity of the Reinforced Concrete Members (화재에 손상된 철근콘크리트 부재의 수치모델 및 내화성능해석)

  • Hwang, Jin-Wook;Ha, Sang-Hee;Lee, Yong-Hoon;Kim, Wha-Jung;Kwak, Hyo-Gyoung
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.497-508
    • /
    • 2013
  • This paper introduces a numerical model which can evaluate the fire-resistant capacity of reinforced concrete members. On the basis of the transient heat transfer considering the heat conduction, convection and radiation, time-dependent temperature distribution across a section is determined. A layered fiber section method is adopted to consider non-linear material properties depending on the temperature and varying with the position of a fiber. Furthermore, effects of non-mechanical strains of each fiber like thermal expansion, transient strain and creep strain are reflected on the non-linear structural analysis to take into account the extreme temperature variation induced by the fire. Analysis results by the numerical model are compared with experimental data from the standard fire tests to validate an exactness of the introduced numerical model. Also, time-dependent changes in the resisting capacities of reinforced concrete members exposed to fire are investigated through the analyses and, the resisting capacities evaluated are compared with those determined by the design code.

Flexural Behaviors of GFRP Rebars Reinforced Concrete Beam under Accelerated Aging Environments (GFRP Rebar 보강 콘크리트 보의 급속노화환경에서의 휨 거동에 관한 연구)

  • Park, Yeon-Ho;Choi, Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.137-144
    • /
    • 2013
  • The use of fiber-reinforced polymer (FRP) reinforcing bars in concrete structures has been increased as an alternative of steel reinforcement which has shown greater vulnerability to corrosion problem. However, the long-term performance of concrete members with FRP reinforcement is still questioned in comparison to the used of steel reinforcement. This study presents the results of an experimental study on the long-term behaviors of GFRP (glass fiber reinforced polymer) bar reinforced concrete beams after exposed to accelerated aging in an environmental chamber with temperature of $46^{\circ}C$ ($115^{\circ}F$) and 80% of relative humidity up to 300 days. The objectives of this research was to compare strength degradation and change of ductility between GFRP reinforced concrete beams and steel reinforcement beams after accelerated aging. Two types (wrapped and sand-coated surface) of GFRP bars and steel were reinforced. in concrete beams. Test results show that the failure modes of GFRP bar reinforced concrete beams are very similar with traditional RC beams, and the change of load-carrying capacity of steel reinforcing concrete beam is greater than that of GFRP bar reinforcing concrete beam under the accelerated aging. Test result also shows that the use of GFRP reinforcing in concrete could be introduced more brittle failure than that of steel reinforcing for practical application. The deformability factor up to compression failures indicates no significant variation before and after exposure of accelerated aging.

Gut Microbiota Community and Its Assembly Associated with Age and Diet in Chinese Centenarians

  • Wang, Fang;Yu, Ting;Huang, Guohong;Cai, Da;Liang, Xiaolin;Su, Haiyan;Zhu, Zhenjun;Li, Danlei;Yang, Yang;Shen, Peihong;Mao, Ruifeng;Yu, Lian;Zhao, Mouming;Li, Quanyang
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1195-1204
    • /
    • 2015
  • Increasing evidence suggests that gut microbiota underpin the development of health and longevity. However, our understanding of what influences the composition of this community of the longevous has not been adequately described. Therefore, illumina sequencing analysis was performed on the gut microbiota of centenarians (aged 100-108 years; RC) and younger elderlies (aged 85-99 years; RE) living in Bama County, Guangxi, China and the elderlies (aged 80-92 years; CE) living in Nanning City, Guangxi, China. In addition, their diet was monitored using a semiquantitative dietary questionary (FFQ 23). The results revealed the abundance of Roseburia and Escherichia was significantly greater, whereas that of Lactobacillus, Faecalibacterium, Parabacteroides, Butyricimonas, Coprococcus, Megamonas, Mitsuokella, Sutterella, and Akkermansia was significantly less in centenarians at the genus level. Both clustering analysis and UniFraq distance analysis showed structural segregation with age and diet among the three populations. Using partial least square discriminate analysis and redundancy analysis, we identified 33 and 34 operational taxonomic units (OTUs) as key OTUs that were significantly associated with age and diet, respectively. Age-related OTUs were characterized as Ruminococcaceae, Clostridiaceae, and Lachnospiraceae, and the former two were increased in the centenarians; diet-related OTUs were classified as Bacteroidales, Lachnospiraceae, and Ruminococcaceae. The former two were deceased, whereas the later one was increased, in the high-fiber diet. The age and high-fiber diet were concomitant with changes in the gut microbiota of centenarians, suggesting that age and high-fiber diet can establish a new structurally balanced architecture of gut microbiota that may benefit the health of centenarians.