• 제목/요약/키워드: Fiber Reinforced Plastic

검색결과 717건 처리시간 0.033초

INVESTIGATION OF A STRESS FIELD EVALUATED BY ELASTIC-PLASTIC ANALYSIS IN DISCONTINUOUS COMPOSITES

  • Kim, H.G.
    • International Journal of Automotive Technology
    • /
    • 제8권4호
    • /
    • pp.483-491
    • /
    • 2007
  • A closed form solution of a composite mechanics system is performed for the investigation of elastic-plastic behavior in order to predict fiber stresses, fiber/matrix interfacial shear stresses, and matrix yielding behavior in short fiber reinforced metal matrix composites. The model is based on a theoretical development that considers the stress concentration between fiber ends and the propagation of matrix plasticity and is compared with the results of a conventional shear lag model as well as a modified shear lag model. For the region of matrix plasticity, slip mechanisms between the fiber and matrix which normally occur at the interface are taken into account for the derivation. Results of predicted stresses for the small-scale yielding as well as the large-scale yielding in the matrix are compared with other theories. The effects of fiber aspect ratio are also evaluated for the internal elastic-plastic stress field. It is found that the incorporation of strong fibers results in substantial improvements in composite strength relative to the fiber/matrix interfacial shear stresses, but can produce earlier matrix yielding because of intensified stress concentration effects. It is also found that the present model can be applied to investigate the stress transfer mechanism between the elastic fiber and the elastic-plastic matrix, such as in short fiber reinforced metal matrix composites.

유리섬유보강 박판패널에 의한 철근콘크리트 구조물의 보수.보강공법 (Repair and Strengthening of R/C Structure Using Glass Fiber Reinforced Plastic Thin Panels)

  • 천의균;진형장;박석암;김행준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.866-873
    • /
    • 2000
  • Reinforced concrete structure can be strengthened by glass fiber reinforced plastic thin panels. The GFRP-Thin Panels are manufactured by pressing form and their application technique are similar to steel plates. The use of FGRP-Thin Panels presents several advantages. The advantages of this structural system are the case of application, the elimination of joint and corrosion at the epoxy-panel interface. This paper introduces the method of manufacturing about GFRP-Thin Panels, mechanical properties and the application of reinforced concrete structures.

  • PDF

FRP로 보강된 RC보의 전단보강효과 비교연구 (A Comparative Study on the Shear-Strengthening Effect of RC Beams Strengthened by FRP)

  • 심종성;김규선
    • 콘크리트학회지
    • /
    • 제10권4호
    • /
    • pp.101-111
    • /
    • 1998
  • 본 논문의 목적은 전단내력이 부족한 R/C보에 CFS(Carbon Fiber Sheets), CFRP(Carbon Fiber Reinforced Plastic), GFRP(Glass Fiber Reinforced Plastics)를 이용해 전단보강을 할 경우에 보의 역학적 거동특성을 규명하기 위한 것이다. 본 논문의 목적을 달성하기 위하여 총 19개의 시험체가 제작되었으며, 실험변수로는 전단스팬비, 보강재료, 보강방법, 보강간격 및 방향을 산정하였다. 본 논문의 실험결과, FRP를 이용해 전단내력이 부족한 R/C보에 보강을 하였을 경우 약 50~70%정도의 보강효과를 나타내었다. 또한 소성이론에 근거한 철근콘크리트보의 전단강도 예측모델을 개발하였고 실험치와의 비교를 통해 개발된 모델의 적합성을 검증하였다.

구조적 손상을 입은 R.C보의 휨보강 효과 (Flexural Strengthening Effect on R.C Beam with Structural Damage)

  • 김성용;한덕전;신창훈
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제8권1호
    • /
    • pp.147-156
    • /
    • 2004
  • 최근에 구조적인 손상을 입은 철근콘크리트 구조물은 내구성과 내력 향상을 위해 보수 보강이 필요하게 되었다. 본 연구에서는 철근콘크리트 보가 휨에 의해서 손상되었을 경우 손상이전의 상태로 내력복원을 할 수 있는지를 규명하고자 한다. 실험결과 기준실험체와 강판 탄소섬유시트 격자탄소섬유판으로 보강한 실험체를 비교할 때, 휨내력은 상승하였고, 연성도와 에너지흡수능력도 기준실험체에 비해 큰 차이를 보이지 않아 보강재인 강판 탄소섬유시트 격자탄소섬유판(복합재)은 R.C보의 휨보강재로 매우 우수한 성능을 보유하고 있다고 판단된다.

탄소성 구성 방정식을 이용한 삼차원 브레이드 복합재료의 역학적 해석 (Mechanical Analysis of 3D Circular Braided Glass Fiber Reinforced Composites Using Elastic-Plastic Constitutive Equations)

  • 류한선;이명규;김지훈;정관수
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.147-150
    • /
    • 2004
  • In order to describe the mechanical behavior of highly anisotropic and asymmetric materials such as fiber­reinforced composites, the elastic-plastic constitutive equations were used here based on the recently developed yield criterion and hardening laws. As for the yield criterion, modified Drucker-Prager yield surface was used to represent the orthotropic and asymetric properties of composite materials, while the anisotropic evolution of back­stress was accounted for the hardening behavior. Experimental procedures to obtain the material parameters of the hardening laws and yield surface are presented for 3D Circular Braided Glass Fiber Reinforced Composites. For verification purpose, comparisons of finite element simulations using the elastic-plastic constitutive equations, anisotropic elastic constitutive equations and experiments were performed for the three point bending tests. The results of finite element simulations showed good agreements with experiments, especially for the elastic-plastic constitutive equations with yield criterion considering anisotropy as well as asymmetry and anisotropic back stress evolution rule.

  • PDF

SENT시험편을 이용한 CFRP/GFRP 하이브리드 적층재의 노치선단부 변형률 평가 (The Strain Evaluation of the Notch tip Area for the CFRP/GFRP Hybrid Laminate Plate using the SENT Specimen)

  • 강지웅
    • 한국안전학회지
    • /
    • 제29권5호
    • /
    • pp.15-21
    • /
    • 2014
  • The aim of this work is conduct the study on light weight and structural performance improvement of the composite wind power blade. GFRP (Glass Fiber Reinforced Plastic) pre-empted by CFRP(Carbon Fiber Reinforced Plastic), the major material of wind power blade, was identified the superiority of mechanical performance through the tensile and fatigue test. SENT(Single Edge Notched Tension) specimen fracture test was conducted on the specimen that laminated together 2 ply CFRP with 4 ply GFRP through DIC(Digital Image Correlation) analysis. The SENT specimen thickness and $a_0/W$ ratio is 1.45 mm and 0.2, respectively. The fracture test accomplished with displacement control with 0.1 mm/min at the room temperature. The experimental apparatus used for the fracture test consisted of a 50kN universal dynamic tester and CCD camera connected to a personal computer (PC), which was used to record images of the specimen surface. Following data acquisition, the images and load-displacements were transferred to the PC, on which the DIC software was implement. The experiment and DIC analysis results show that CFRP/GFRP laminated composite exhibits improvement of the strength, compared with that of the existing blade material. This study shows the result that the strength of CFRP rotor blade of wind turbine satisfies through the experimental and DIC method.

섬유강화 플라스틱 복합판의 압축성형에 있어서 경사하중의 영향 (AL망의 적층소재의 유동에 의하여) (The Effect of Compression Molding with Inclined Force for Fiber - Reinforced Thermoplastics)

  • 김만수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권3호
    • /
    • pp.63-67
    • /
    • 1994
  • A main property for fiber reinforced thermoplastic composite material in compression molding is the flow of fibers. This flow is so effective a long direction of acting force that this study examined for the inclined angel of 30$^{\circ}$, 45$^{\circ}$ and 6$^{\circ}$. Below the near softing temperature of plastic, the fiber has been fractured at a point so that the fiber strength is smaller then the local hydrostatic stress in the mold. It has been found that the position of fracture is changing accrding to the incling angle. In case of the above softing temperature, the larger the inclined is, the farther the flow of fiber move. Also the plastic flow has been progresed with the cicular are type.

  • PDF

국부열손상을 받은 복합재료의 강도특성 및 비파괴평가 (Strength Characteristics and Non-Destructive Evaluation of Composites with Heat Damage)

  • 남기우;김영운
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.173-178
    • /
    • 2002
  • Fourier transform has been one of the most common tools to study the frequency characteristics of signals. With the Fourier transform alone, it is difficult to tell whether signal's frequency contents evolve in time or not. Except for a few special cases, the frequency contents of most signals encountered in the real world change with time. Time-frequency methods are developed recently to overcome the drawbacks of Fourier transform, which can represent the information of signals in time and frequency at the same time. In this study, heat damage process of a carbon fiber reinforced plastic(CFRP) and glass fiber reinforced plastic(GFRP) under monotonic tensile loading was characterized by acoustic emission. Different kinds of specimens were used to determine the characteristics of Strength and AE signals. Time-frequency analysis methods were employed for the analysis of fracture mechanism in CFRP such as matrix cracking, debonding and fiber fracture.

  • PDF

횡하중을 받는 SiC/Ti-15-3 MMC 복합재 계면영역에서의 탄소성 응력장분포거동(II) (Elastic-Plastic Stress Distributions Behavior in the Interface of SiC/Ti-15-3 MMC under Transverse Loading(II))

  • 강지웅;권오헌
    • 한국안전학회지
    • /
    • 제20권2호
    • /
    • pp.26-31
    • /
    • 2005
  • The strong continuous fiber reinforced metal matrix composites (MMCs) are recently used in aerospace and transportation applications as an advanced material due to its high strength and light weight. Unidirectional fiber-metal matrix composites have superior mechanical properties along the longitudinal direction. However, the applicability of continuous fiber reinforced MMCs is somewhat limited due to their relatively poor transverse properties. Therefore, the transverse properties of MMCs are significantly influenced by the properties of the fiber/matrix interface. In order to be able to utilize these MMCs effectively and with safety, it must be determined their elastic plastic behaviors at the interface. In this study, the interfacial stress states of transversely loaded unidirectional fiber reinforced metal matrix composites investigated by using elastic-plastic finite element analysis. Different fiber volume fractions $(5-60\%)$ were studied numerically. The interlace was treated as three thin layer (with different properties) with a finite thickness between the fiber and the matrix. The fiber is modeled as transversely isotropic linear-elastic, and the matrix as isotropic elastic-plastic material. Using proposed model, the effects of the interface region and fiber arrangement in MMCs on the distributions of stress and strain are evaluated. The stress distributions of a thin multi layer interface have much less changes compared with conventional perfect interface. The analyses were based on a two-dimensional generalized plane strain model of a cross-section of an unidirectional composite by the ANSYS finite element analysis code.