• 제목/요약/키워드: Fiber Reinforced Plastic

검색결과 707건 처리시간 0.05초

유리섬유 보강적층재의 파괴인성 특성 (Fracture Toughness of Glass Fiber Reinforced Laminated Timbers)

  • 김선호;홍순일
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권6호
    • /
    • pp.861-867
    • /
    • 2015
  • 유리섬유 보강적층재의 파괴인성을 평가하기 위하여 Compact tension (CT)형 시험을 실시하였다. 보강재는 직물형 유리섬유와 시트형 유리섬유강화플라스틱을 사용하였으며, 보강적층재는 층재사이에 보강재를 삽입 적층하였다. ASTM D5045에 의거하여 CT형 시험편을 제작하였다. 시험편의 길이는 끝면거리를 고려하여 선정하였으며, 인위적인 노치 끝에 볼트구멍(12 mm, 16 mm, 20 mm)을 선공하였다. 시트형 유리섬유강화플라스틱 보강적층재의 파괴인성하중은 보강하지 않은 적층재보다 최대 33% 증가하였으며, 직물형 유리섬유 보강적층재는 최대 152% 증가하였다. 이중외팔보(Double Cantilever Beam)이론에 의한 응력확대계수는 시트형 유리섬유강화플라스틱 보강적층재의 경우 1.08~1.38이었으며, 직물형 유리섬유 보강적층재는 1.38~1.86이었다. 이는 직물형 유리섬유 보강적층재의 경우 유리섬유와 층재의 섬유배열방향이 직교하여 파괴하중으로 인한 목재의 할렬진행을 억제시켰기 때문이다.

Evaluate the effect of steel, polypropylene and recycled plastic fibers on concrete properties

  • Fayed, Sabry;Mansour, Walid
    • Advances in concrete construction
    • /
    • 제10권4호
    • /
    • pp.319-332
    • /
    • 2020
  • The impacts of reinforcing concrete matrix with steel fibers, polypropylene fibers and recycled plastic fibers using different volume fractions of 0.15%, 0.5%, 1.5% and 2.5% on the compressive and tensile characteristics are experimentally investigated in the current research. Also, flexural behavior of plain concrete (PC) beams, shear performance of reinforced concrete (RC) beams and compressive characteristics of both PC and RC columns reinforced with recycled plastic fibers were studied. The experimental results showed that the steel fibers improved the splitting tensile strength of concrete higher than both the polypropylene fibers and recycled plastic fibers. The end-hooked steel fibers had a positive effect on the compressive strength of concrete while, the polypropylene fibers, the recycled plastic fibers and the rounded steel fibers had a negative impact. Compressive strength of end-hooked steel fiber specimen with volume fraction of 2.5% exhibited the highest value among all tested samples of 32.48 MPa, 21.83% higher than the control specimen. The ultimate load, stiffness, ductility and failure patterns of PC and RC beams in addition to PC and RC columns strengthened with recycled plastic fibers enhanced remarkably compared to non-strengthened elements. The maximum ultimate load and stiffness of RC column reinforced with recycled plastic fibers with 1.5% volume fraction improved by 21 and 15%, respectively compared to non-reinforced RC column.

일방향 섬유강화 플라스틱 복합재의 점도에 미치는 성형인자의 영향 (Effect of Molding Parameters on Viscosity of Unidirectional Fiber Reinforced Plastic Composites)

  • 조선형;안종윤;윤성운
    • 한국생산제조학회지
    • /
    • 제9권6호
    • /
    • pp.41-48
    • /
    • 2000
  • The Compression molding process is widely used in the automotive industry to produce parts that are large, thin, light-weight, strong and stiff. Compression molded parts are formed by squeezing a glass fiber reinforced polypropylene sheet, known a glass mat thermoplastic(GMT), between two heated cavity surfaces. In this study, the anisotropic viscosity of the Unidirectional Fiber-Reinforced Plastic Composites is measured using the parallel plastometer and the composites is treated as an incompressible Newtonian fluid. The effects of molding parameter and fiber contents ratio on longitudinal/transverse viscosity are also discussed.

  • PDF

섬유보강 폴리머 시멘트 모르타르의 초기수축균열 및 내구특성 (Plastic Shrinkage and Durability Characteristics of Fiber Reinforced Polymer-Modified Mortars)

  • 원종필;장필성;김명균;공태웅
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.156-159
    • /
    • 2004
  • The intention of this study is to reduce the plastic shrinkage of the polymer modified cement mortar using the PVA fiber. The durability of PVA fiber reinforced polymer cement mortar was also evaluated. The test results of PVA fiber reinforced polymer modified cement mortar were compared with plain polymer modified cement mortar(non-fiber). In conclusion, PVA fiber reinforced polymer modified cement mortar showed an ability to reduce the total crack area and maximum crack width significantly. Also. fiber reinforced polymer modified cement mortar show improved durability performance.

  • PDF

나일론 섬유보강 콘크리트의 물리적 특성 및 모르타르 소성수축균열 제어성능 평가 (Evaluation of the Properties of Nylon Fiber Reinforced Concrete and the Performance in Plastic Shrinkage Cracking Reduction)

  • 김광련;권용주;백인상;김용태;김병기
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.575-578
    • /
    • 2005
  • Recently, various concrete reinforcing fibers have been used to reduce the plastic shrinkage cracking which occurs before the concrete hardens. In this study, the physical properties of nylon fiber reinforced concrete such as slump, air content, compressive strength and tensile strength were investigated. In addition, the performance of nylon fiber in the plastic shrinkage cracking reduction of mortar has been estimated in comparison with polypropylene fiber and cellulose fiber. Nylon fiber showed considerable advantages in terms of the workability of concrete and the plastic shrinkage cracking reduction of mortar compared with polypropylene fiber and cellulose fiber.

  • PDF

소성수축균열 저감을 위한 나일론 섬유보강 콘크리트의 현장적용에 관한 연구 (Study for Field Application of Nylon Fiber Reinforced Concrete for Plastic Shringage Crack Reduction)

  • 권용주;김광련;강동수;박성우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.661-664
    • /
    • 2006
  • Recently, various concrete reinforcing fibers have been used to reduce the plastic shrinkage cracking which occurs before the concrete hardens. In this study, the physical properties of nylon fiber reinforced concrete such as slump, air content, compressive strength and tensile strength were investigated. In addition, the performance of nylon fiber in the plastic shrinkage cracking reduction of concrete has been estimated in comparison with polypropylene, poly vinyl alcohol fiber and cellulose fiber. Nylon fiber showed considerable advantages in terms of the workability of concrete and the plastic shrinkage cracking reduction of concrete compared with polypropylene fiber and cellulose fiber.

  • PDF

소성힌지부 강섬유 혼입 모르타르 적용 철근콘크리트 기둥의 내진성능평가 (Seismic Performance Evaluation of Reinforced Concrete Columns by Applying Steel Fiber-Reinforced Mortar at Plastic Hinge Region)

  • 조창근;한성진;권민호;임청권
    • 콘크리트학회논문집
    • /
    • 제24권3호
    • /
    • pp.241-248
    • /
    • 2012
  • 이 연구에서는, 철근콘크리트 기둥 실험체를 대상으로 기둥의 휨 위험 단면부에 국부적으로 강섬유 시멘트모르타르를 적용함으로서 기존 철근콘크리트 기둥에 비해 내진성능이 우수한 강섬유 모르타르 적용 철근콘크리트 복합기둥공법에 관해 제시하였다. 제시된 적용공법의 성능검증을 위하여 기존 철근콘크리트 기둥 1개 및 소성힌지구간에 국부적으로 강섬유 모르타르를 적용한 복합기둥 실험체 2개를 제작하여 일정 축하중 하에서 횡방향 반복하중을 받는 재하시험을 수행하였다. 콘크리트 및 강섬유 모르타르는 모두 현장타설되었다. 재하시험 결과 기존 철근콘크리트 기둥 실험체와 비교하여 강섬유 모르타르 적용 철근콘크리트 복합기둥 실험체의 경우 휨 및 전단 균열의 제어에 우수할 뿐만 아니라 기둥의 횡하중 내력 및 횡방향 변형 능력 향상에서도 우수한 것으로 평가되었다.

유리섬유 강화플라스틱 복합관의 구조적 특성 (Structural Behavior of Glass-Fiber Reinforced Plastic Composite Pipes)

  • 연규석;김남길;조규우;김동준;최종윤;백종만
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.822-827
    • /
    • 2003
  • This study was performed to evaluate the internal and external factors affecting external strength of the 3-layer polymer composite pipes made of polymer mortar and fiber-glass reinforced plastic. Twenty four sandwich type 3-layer polymer composite pipes were made of polymer mortar and fiber-glass reinforced plastic by centrifugal method. The objective of this study was to evaluate the effects the of polymer mortar thickness for and core fiber-glass contents per unit area on external strength of 3-layer polymer composite pipes. For the more economical and practical design of 3-layer polymer composite pipe, further study should be done for the various polymer mortar, fiber-glass and different ratio of the inside/outside FRP thickness.

  • PDF

Analysis of steel-GFRP reinforced concrete circular columns

  • Shraideh, M.S.;Aboutaha, R.S.
    • Computers and Concrete
    • /
    • 제11권4호
    • /
    • pp.351-364
    • /
    • 2013
  • This paper presents results from an analytical investigation of the behavior of steel reinforced concrete circular column sections with additional Glass Fiber Reinforced Polymers (GFRP) bars. The primary application of this composite section is to relocate the plastic hinge region from the column-footing joint where repair is difficult and expensive. Mainly, the study focuses on the development of the full nominal moment-axial load (M-P) interaction diagrams for hybrid concrete sections, reinforced with steel bars as primary reinforcement, and GFRP as auxiliary control bars. A large parametric study of circular steel reinforced concrete members were undertaken using a purpose-built MATLAB(c) code. The parameters considered were amount, location, dimensions and mechanical properties of steel, GFRP and concrete. The results indicate that the plastic hinge was indeed shifted to a less critical and congested region, thus facilitating cost-effective repair. Moreover, the reinforced concrete steel-GFRP section exhibited high strength and good ductility.