• Title/Summary/Keyword: Fiber Reinforced Plastic

Search Result 707, Processing Time 0.033 seconds

INVESTIGATION OF A STRESS FIELD EVALUATED BY ELASTIC-PLASTIC ANALYSIS IN DISCONTINUOUS COMPOSITES

  • Kim, H.G.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.483-491
    • /
    • 2007
  • A closed form solution of a composite mechanics system is performed for the investigation of elastic-plastic behavior in order to predict fiber stresses, fiber/matrix interfacial shear stresses, and matrix yielding behavior in short fiber reinforced metal matrix composites. The model is based on a theoretical development that considers the stress concentration between fiber ends and the propagation of matrix plasticity and is compared with the results of a conventional shear lag model as well as a modified shear lag model. For the region of matrix plasticity, slip mechanisms between the fiber and matrix which normally occur at the interface are taken into account for the derivation. Results of predicted stresses for the small-scale yielding as well as the large-scale yielding in the matrix are compared with other theories. The effects of fiber aspect ratio are also evaluated for the internal elastic-plastic stress field. It is found that the incorporation of strong fibers results in substantial improvements in composite strength relative to the fiber/matrix interfacial shear stresses, but can produce earlier matrix yielding because of intensified stress concentration effects. It is also found that the present model can be applied to investigate the stress transfer mechanism between the elastic fiber and the elastic-plastic matrix, such as in short fiber reinforced metal matrix composites.

Repair and Strengthening of R/C Structure Using Glass Fiber Reinforced Plastic Thin Panels (유리섬유보강 박판패널에 의한 철근콘크리트 구조물의 보수.보강공법)

  • 천의균;진형장;박석암;김행준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.866-873
    • /
    • 2000
  • Reinforced concrete structure can be strengthened by glass fiber reinforced plastic thin panels. The GFRP-Thin Panels are manufactured by pressing form and their application technique are similar to steel plates. The use of FGRP-Thin Panels presents several advantages. The advantages of this structural system are the case of application, the elimination of joint and corrosion at the epoxy-panel interface. This paper introduces the method of manufacturing about GFRP-Thin Panels, mechanical properties and the application of reinforced concrete structures.

  • PDF

A Comparative Study on the Shear-Strengthening Effect of RC Beams Strengthened by FRP (FRP로 보강된 RC보의 전단보강효과 비교연구)

  • 심종성;김규선
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.101-111
    • /
    • 1998
  • This study presents test results of RC beams strengthened by carbon fiber sheet(CFS), carbon fiber reinforced plastics(CFRP) or glass fiber reinforced plastics(GFRP) for increasing shear resistance. Nineteen specimens were tested, and the test was performed with different parameters including the type of strengthening materials(CFS, GFRP, CFRP), shear-strengthening methods(wing type, jacket type, strip type), strip-spacing, strengthening direction of FRP. The test results show that shear-damaged RC beams strengthened by FRP(CFS, GFRP, CFRP) have more improved the shear capacity. The mathematical model based on plastic theory was also developed to predict shear strength of shear-damaged RC beams strengthened by FRP. The predictions using the mathematical model. are agreed with the observations from the observed shear strengths for 19 test beams.

Flexural Strengthening Effect on R.C Beam with Structural Damage (구조적 손상을 입은 R.C보의 휨보강 효과)

  • Kim, Sung-Yong;Han, Duck-Jeon;Shin, Chang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.147-156
    • /
    • 2004
  • The Rehabilitation and repair of structurally deteriorated, reinforced concrete structures will be highly demanded in the near future. The purpose of this study is to investigate whether damaged beams that crack and deflection are developed by bending moment are restored to the former state. In conclusion, when specimens strengthened with Steel Plate, CFS(Carbon Fiber Sheet) and CFRP-Grid(Carbon Fiber Reinforced Plastic-Grid) are compared with standard specimen, flexural capacity is increased and ductility and energy absorbtion capacity are similar with undamaged specimen. Therefore Steel Plate, CFS(Carbon Fiber Sheet) and CFRP-Grid (Carbon Fiber Reinforced Plastic-Grid) have highly efficiency as material of flexural strengthening.

Mechanical Analysis of 3D Circular Braided Glass Fiber Reinforced Composites Using Elastic-Plastic Constitutive Equations (탄소성 구성 방정식을 이용한 삼차원 브레이드 복합재료의 역학적 해석)

  • Ryou Hansun;Lee Myoung-Gyu;Kim Jihoon;Chung Kwansoo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.147-150
    • /
    • 2004
  • In order to describe the mechanical behavior of highly anisotropic and asymmetric materials such as fiber­reinforced composites, the elastic-plastic constitutive equations were used here based on the recently developed yield criterion and hardening laws. As for the yield criterion, modified Drucker-Prager yield surface was used to represent the orthotropic and asymetric properties of composite materials, while the anisotropic evolution of back­stress was accounted for the hardening behavior. Experimental procedures to obtain the material parameters of the hardening laws and yield surface are presented for 3D Circular Braided Glass Fiber Reinforced Composites. For verification purpose, comparisons of finite element simulations using the elastic-plastic constitutive equations, anisotropic elastic constitutive equations and experiments were performed for the three point bending tests. The results of finite element simulations showed good agreements with experiments, especially for the elastic-plastic constitutive equations with yield criterion considering anisotropy as well as asymmetry and anisotropic back stress evolution rule.

  • PDF

The Strain Evaluation of the Notch tip Area for the CFRP/GFRP Hybrid Laminate Plate using the SENT Specimen (SENT시험편을 이용한 CFRP/GFRP 하이브리드 적층재의 노치선단부 변형률 평가)

  • Kang, Ji Woong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.15-21
    • /
    • 2014
  • The aim of this work is conduct the study on light weight and structural performance improvement of the composite wind power blade. GFRP (Glass Fiber Reinforced Plastic) pre-empted by CFRP(Carbon Fiber Reinforced Plastic), the major material of wind power blade, was identified the superiority of mechanical performance through the tensile and fatigue test. SENT(Single Edge Notched Tension) specimen fracture test was conducted on the specimen that laminated together 2 ply CFRP with 4 ply GFRP through DIC(Digital Image Correlation) analysis. The SENT specimen thickness and $a_0/W$ ratio is 1.45 mm and 0.2, respectively. The fracture test accomplished with displacement control with 0.1 mm/min at the room temperature. The experimental apparatus used for the fracture test consisted of a 50kN universal dynamic tester and CCD camera connected to a personal computer (PC), which was used to record images of the specimen surface. Following data acquisition, the images and load-displacements were transferred to the PC, on which the DIC software was implement. The experiment and DIC analysis results show that CFRP/GFRP laminated composite exhibits improvement of the strength, compared with that of the existing blade material. This study shows the result that the strength of CFRP rotor blade of wind turbine satisfies through the experimental and DIC method.

The Effect of Compression Molding with Inclined Force for Fiber - Reinforced Thermoplastics (섬유강화 플라스틱 복합판의 압축성형에 있어서 경사하중의 영향 (AL망의 적층소재의 유동에 의하여))

  • 김만수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.63-67
    • /
    • 1994
  • A main property for fiber reinforced thermoplastic composite material in compression molding is the flow of fibers. This flow is so effective a long direction of acting force that this study examined for the inclined angel of 30$^{\circ}$, 45$^{\circ}$ and 6$^{\circ}$. Below the near softing temperature of plastic, the fiber has been fractured at a point so that the fiber strength is smaller then the local hydrostatic stress in the mold. It has been found that the position of fracture is changing accrding to the incling angle. In case of the above softing temperature, the larger the inclined is, the farther the flow of fiber move. Also the plastic flow has been progresed with the cicular are type.

  • PDF

Strength Characteristics and Non-Destructive Evaluation of Composites with Heat Damage (국부열손상을 받은 복합재료의 강도특성 및 비파괴평가)

  • Nam, Ki-Woo;Kim, Young-Un
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.173-178
    • /
    • 2002
  • Fourier transform has been one of the most common tools to study the frequency characteristics of signals. With the Fourier transform alone, it is difficult to tell whether signal's frequency contents evolve in time or not. Except for a few special cases, the frequency contents of most signals encountered in the real world change with time. Time-frequency methods are developed recently to overcome the drawbacks of Fourier transform, which can represent the information of signals in time and frequency at the same time. In this study, heat damage process of a carbon fiber reinforced plastic(CFRP) and glass fiber reinforced plastic(GFRP) under monotonic tensile loading was characterized by acoustic emission. Different kinds of specimens were used to determine the characteristics of Strength and AE signals. Time-frequency analysis methods were employed for the analysis of fracture mechanism in CFRP such as matrix cracking, debonding and fiber fracture.

  • PDF

Elastic-Plastic Stress Distributions Behavior in the Interface of SiC/Ti-15-3 MMC under Transverse Loading(II) (횡하중을 받는 SiC/Ti-15-3 MMC 복합재 계면영역에서의 탄소성 응력장분포거동(II))

  • Kang Ji-Woong;Kwon Oh-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.26-31
    • /
    • 2005
  • The strong continuous fiber reinforced metal matrix composites (MMCs) are recently used in aerospace and transportation applications as an advanced material due to its high strength and light weight. Unidirectional fiber-metal matrix composites have superior mechanical properties along the longitudinal direction. However, the applicability of continuous fiber reinforced MMCs is somewhat limited due to their relatively poor transverse properties. Therefore, the transverse properties of MMCs are significantly influenced by the properties of the fiber/matrix interface. In order to be able to utilize these MMCs effectively and with safety, it must be determined their elastic plastic behaviors at the interface. In this study, the interfacial stress states of transversely loaded unidirectional fiber reinforced metal matrix composites investigated by using elastic-plastic finite element analysis. Different fiber volume fractions $(5-60\%)$ were studied numerically. The interlace was treated as three thin layer (with different properties) with a finite thickness between the fiber and the matrix. The fiber is modeled as transversely isotropic linear-elastic, and the matrix as isotropic elastic-plastic material. Using proposed model, the effects of the interface region and fiber arrangement in MMCs on the distributions of stress and strain are evaluated. The stress distributions of a thin multi layer interface have much less changes compared with conventional perfect interface. The analyses were based on a two-dimensional generalized plane strain model of a cross-section of an unidirectional composite by the ANSYS finite element analysis code.