• Title/Summary/Keyword: Fiber Reinforced Plastic(FRP)

Search Result 177, Processing Time 0.034 seconds

Cyclic testing of steel I-beams reinforced with GFRP

  • Egilmez, O. Ozgur;Yormaz, Doruk
    • Steel and Composite Structures
    • /
    • v.11 no.2
    • /
    • pp.93-114
    • /
    • 2011
  • Flange and web local buckling in beam plastic hinge regions of steel moment frames can prevent beam-column connections from achieving adequate plastic rotations under earthquake-induced forces. This threat is especially valid for existing steel moment frame buildings with beams that lack adequate flange/web slenderness ratios. As the use of fiber reinforced polymers (FRP) have increased in strengthening and repair of steel members in recent years, using FRPs in stabilizing local instabilities have also attracted attention. Previous computational studies have shown that longitudinally oriented glass FRP (GFRP) strips may serve to moderately brace beam flanges against the occurrence of local buckling during plastic hinging. An experimental study was conducted at Izmir Institute of Technology investigating the effects of GFRP reinforcement on local buckling behavior of existing steel I-beams with flange slenderness ratios (FSR) exceeding the slenderness limits set forth in current seismic design specifications and modified by a bottom flange triangular welded haunch. Four European HE400AA steel beams with a depth/width ratio of 1.26 and FSR of 11.4 were cyclically loaded up to 4% rotation in a cantilever beam test set-up. Both bare beams and beams with GFRP sheets were tested in order to investigate the contribution of GFRP sheets in mitigating local flange buckling. Different configurations of GFRP sheets were considered. The tests have shown that GFRP reinforcement can moderately mitigate inelastic flange local buckling.

Evaluation and comparison of GRP and FRP applications on the behavior of RCCs made of NC and HSC

  • Shafieinia, Mohsen;Sajedi, Fathollah
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.495-506
    • /
    • 2019
  • This paper presents the results of axial pressure testing on reinforced concrete columns (RCCs) filled with confined normal concrete (NC) and high-strength concrete (HSC) using glass-fiber reinforced plastic pipes (GRP) casing as well as fiber reinforced polymer (FRP). This study aims to evaluate the behavior and mechanical properties of columns confined with GRP casing and FRP wrapping under pressure loads. The major parameters in the experiments were the type of concrete, the effect of GRP casing and FRP wrapping, as well as the number of FRP layers. 12 cylindrical RCCs (150*600) mm were prepared and divided into two groups, NC and HSC, and each group was divided into two parts. In each part, one column was without FRP strengthening layer, a column was wrapped with one FRP layer and another column with two FRP layers. All columns were tested under concentrated compression load. The results of the study showed that the utilization of FRP wrapping and GRP casing improved compression capacity and ductility of RCCs. The addition of one and two layers-FRP wrapping increased compression capacity in the NC group to an average of 18.5% and 26.5% and to an average of 10.2% and 24.8% in the HSC group. Meanwhile, the utilization of GRP casing increased the compression capacity of the columns by 4 times in the NC group and 3.38 times in the HSC group. The results indicated that although both FRP wrapping and GRP casing result in confinement, the GRP casing resulted in increased compression capacity and ductility of the RCCs due to higher confinement. Furthermore, the confinement effect was higher on columns made with NC.

Study on Shearing Properties and Behavior of the Grout-reinforced Underground with ERP Pipes (FRP 그라우팅 보강지반의 전단특성에 관한 연구)

  • 최용기;박종호;권오엽;이상덕
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.73-81
    • /
    • 2002
  • Nowadays , the grouted-reinforcing method, which is called FRP(Fiberglass-reinforced-plastic) pipe .reinforcing method, has been introduced in the community of pound reinforcements. The resistance to corrosion and chemical attack high strength to weight ratio, and ease of handling make these pipes a better alternative to steels in tunnel. However, to fully utilize FRP pipes as grouted reinforcing members at the face and the crown in tunnel, their mechanical properties and behaviors and the grout-reinforced underground have to be verified. Laboratory shear tests were conducted to evaluate the mechanical properties for FRP pipes, the grout-reinforced members and the grout-reinforced body of FRP pipes. According to the test results, it was observed that FRP pipes play a dominant role in shearing behavior of the grout-reinforced members and that their shearing resistance exerts after the shearing displacement increases to some extent.

도시철도 직류용 FRP 지지애자 및 장간애자 특성 분석

  • Gang, Hyeon-Il;Lee, Gi-Seung;Kim, Yun-Sik;Sim, Jae-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.152-152
    • /
    • 2009
  • Direct Current Fiber Reinforced Plastic (DC FRP) insulators were developed and their mechanical and electrical characteristics were investigated. Electrical tests were carried out to measure withstanding and flashover voltages under common use frequency condition. Tensile and bending tests were performed for the mechanical characteristics. The test results showed that DC FRP insulators had superior voltage resistances and strengths to porcelain insulators.

  • PDF

Electric properties of FRP polymer stem insulator for DC power (직류용 FRP 폴리머 장간애자의 전기적 특성에 관한 연구)

  • Kang, Hyun-Il;Kim, Youn-Sik;Sim, Jae-Suk;Lee, Gi-Seung
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1912-1917
    • /
    • 2010
  • Fiber Reinforced Plastic (FRP) insulators for direct current (DC) were developed and their electrical characteristics were investigated. Electrical tests were carried out to measure withstanding and flashover voltages under common use frequency condition. Tensile and bending tests were performed for the mechanical characteristics. The test results showed that DC FRP insulators had superior voltage resistances and strengths to porcelain insulators.

  • PDF

Ductility Improveent Methods for Cncrete Beams Prestressed with FRP (Fiber Reinforced Plastic) Tendons (FRP 긴장재를 이용한 프리스트레스트 콘크리트보의 연성개선방법)

  • 정상모
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.643-648
    • /
    • 1998
  • Despite many advantages of FRP materials, such as corrosion resistance, their linear elastic behavior up to rupture is likely to result in a lack of ductility. This paper discusses ductility improvement methods for prestressed concrete beams using FRP tendons. The methods were evaluated thorough extensive analytical and experimental investigations. The methods include optimization of sectional ductility through proper reinforcement, concrete confinement, concrete reinforcement with fibers, and prestressing with unbonded tendons.

  • PDF

Experiment on Flexural Analysis of RC Beams Strengthened with Composite Material Panel (복합재료 패널로 보강된 철근 콘크리트 보의 휨 실험)

  • Kim, Jin-Man;Jung, Mi-Roo;Lee, Jae-Hong;Yoon, Kwang-Sup
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.117-126
    • /
    • 2010
  • Experiment on flexural analysis of RC beams strengthened with composite material panel is presented. Recently, the strengthening of reinforced concrete structures using advanced fiber reinforced plastic (FRP) composites, and in particular the behavior of FRP-reinforced concrete structure is topic that has become very popular because of good corrosion resistance and easy for site handling due to their light weight. In this study, an efficient computational analysis using ABAQUS to predict the ultimate moment capacity of reinforced concrete beams strengthened with FRP is presented. Test parameters in this study are the shape of fiber arrangement (LT, DB, DBT) and the number of carbon fiber sheets (2ply, 3ply). When comparing with results of the analytical model, results of the experiments show similar values. Furthermore, reinforced concrete beam with FRP obtains improved effects for ultimate strength.

  • PDF

Structural Evaluation of Glass-fiber Reinforced 3-Layer Polymer Composite Pipe (GFRP 보강 폴리머 모르터 3중복합관의 구조적 특성)

  • Yeon, Kyu-Seok;Kwon, Yoon-Hwan;Ryu, Keun-Woo;Jin, Nan-Ji
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.147-151
    • /
    • 2001
  • This study was performed to evaluate the internal and external factors affecting external strength of the 3-layer polymer composite pipes made of polymer mortar and fiber-glass reinforced plastic. Twenty four sandwich type 3-layer polymer composite pipes were made of polymer mortar and fiber-glass reinforced plastic by centrifugal method. The objective of this study was to evaluate the effects the of polymer mortar thickness for and core fiber-glass contents per unit area on external strength of 3-layer polymer composite pipes. For the more economical and practical design of 3-layer polymer composite pipe, further study should be done for the various polymer mortar, fiber-glass and different ratio of the inside/outside FRP thickness.

  • PDF

Experimental Study on the Removal of Biofouling from Specimens of Small Ship Constructions Using Water Jet (물 제트를 이용한 소형선박제작 시편의 선체부착생물 제거에 관한 실험적 연구)

  • Seo, Daewon;Oh, Jungkeun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1078-1085
    • /
    • 2022
  • Fouling organisms attached to a ship not only greatly increase the resistance of the ship as they grow on the hull but also cause disturbances in local marine ecosystems as they move with the ship. Accordingly, the International Maritime Organization has started discussing the removal of biofouling and evaluation of cleaning performance to prevent the migration of hull-fouling species. In this study, specimens of FRP(Fiber Reinforced Plastic), HDPE(High Density Polyethylene), and CFRP(Carbon Fiber Reinforced Plastic) materials used for small ship construction were cured in Gyeokpo Port (Jeonlakbuk-do) for about 80 days. Then, attached organism removal experiments were performed using a water jet nozzle. The results show that seaweeds, such as laver, were removed when the distance between the nozzle and the specimen was 1.8 cm and the pressure was 100 bar. Furthermore, it was confirmed that the cleaning of barnacles was possible only when the pressure was 200 bar or more.

Flexural Behavior of Reinforced Concrete Beam with Hybrid FRP Rods (Hybrid FRP Rod로 보강된 철근콘크리트 보의 휨 거동)

  • Kwak, Kae-Hwan;Jang, Hwa-Sup;Yang, Dong-Oun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.327-330
    • /
    • 2005
  • In this study, the nature of brittleness, one of the main problems of GFRP(Glass Fiber Reinforced Plastic) Re-bar, is improved. Therefore, Hybrid GFRP Rod is developed by attaching FBG sensor to the new GFRP Rod with toughness, essential for flexural reinforcement of the concrete. The test was performed with specimens of Hybrid GFRP Rod. According to the test, data measured by electric gauge sensor are compared with data measured by FBG sensor.

  • PDF