• Title/Summary/Keyword: Fiber Ratio

Search Result 2,426, Processing Time 0.054 seconds

Analysis of Fiber-optic Link Budget for Optically fed Wireless Communication

  • Kim, Jung-Tae
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.1
    • /
    • pp.35-38
    • /
    • 2003
  • Analyses of performance of wireless broadband communication systems employing fiber-optic link have presented. We have analyzed CNR penalty to evaluate system performance by taking into account, radio link considering rainfall attenuation, and optical link considering several carrier-to-noise ratio versus the optical modulation index.

Effects of Steel Fiber Properties on Compressive and Flexural Toughness of Steel Fiber-Reinforced Concrete (강섬유의 특성이 강섬유보강 콘크리트의 압축 및 휨 인성에 미치는 영향)

  • Lim, Dong-Gyun;Jang, Seok-Joon;Jeong, Gwon-Young;Youn, Da-Ae;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.43-50
    • /
    • 2019
  • Effects of tensile strength and aspect ratio of steel fiber on compressive and flexural behavior of steel fiber-reinforced concrete (SFRC) with high- and normal-strength were investigated. Also, this study explores compressive behavior of SFRC with different loading rate. For this purpose, four types of steel fiber were used for SFRC with specified compressive strength of 35 and 60 MPa, respectively. Cylindrical specimens with a diameter of 150 mm and height of 300 mm were made for compression test, and prismatic specimens with a $150{\times}150mm$ cross-section and 450 mm span length were made for flexural test. Test results from compression and flexural tests indicated that the toughness of concrete significant increased with steel fibers. Especially, using steel fiber with high tensile strength and aspect ratio can be lead to performance improvement of high-strength SFRC. In this study, equations are suggested to predict compressive toughness ratio of SFRC from flexural toughness ratio.

Fiber orientation distribution of reinforced cemented Toyoura sand

  • Safdar, Muhammad;Newson, Tim;Waseem, Muhammad
    • Geomechanics and Engineering
    • /
    • v.30 no.1
    • /
    • pp.67-73
    • /
    • 2022
  • In this study, the fiber orientation distribution (FOD) is investigated using both micro-CT (computerized tomography) and image analysis of physically cut specimens prepared from Polyvinyl Alcohol (PVA) fiber reinforced cemented Toyoura sand. The micro-CT images of the fiber reinforced cemented sand specimens were visualized in horizontal and vertical sections. Scans were obtained using a frame rate of two frames and an exposure time of 500 milliseconds. The number of images was set to optimize and typically resulted in approximately 3000 images. Then, the angles of the fibers for horizontal sections and in vertical section were calculated using the VGStudio MAX software. The number of fibers intersecting horizontal and vertical sections are counted using these images. A similar approach was used for physically cut specimens. The variation of results of fiber orientation between micro-CT scans and visual count were approximately 4-8%. The micro-CT scans were able to precisely investigate the fiber orientation distribution of fibers in these samples. The results show that 85-90% of the PVA fibers are oriented between ±30° of horizontal, and approximately 95% of fibers have an orientation that lies within ±45° of the horizontal plane. Finally, a comparison of experimental results with the generalized fiber orientation distribution function 𝜌(θ) is presented for isotropic and anisotropic distribution in fiber reinforced cemented Toyoura sand specimens. Experimentally, it can be seen that the average ratio of the number of fibers intersecting the finite area on a vertical plane to number of fibers intersecting the finite area on a horizontal plane (NVtot/NHtot) cut through a sample varies from 2.08 to 2.12 (an average ratio of 2.10 is obtained in this study). Based up on the analytical predictions, it can be seen that the average NVtot/NHtot ratio varies from 2.13 to 2.17 for varying n values (an average ratio of 2.15).

Characteristics of Soils Reinforced by FPF(Fibrillated Polypropylene Fiber) (FPF(Fibrillated Polypropylene Fiber)보강 성토재료의 강도 특성에 관한 연구)

  • 김낙경;박종식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.433-440
    • /
    • 2001
  • This study was to analyze characteristics of soils reinforced by FPF(Fibrillated Polypropylene Fiber). Laboratory test, model test and field tests were performed on soils reinforced by fibers, to evaluate the shear strength characteristics. For the silty sand, clayey sand and silty clay, the influence of fiber shape, fiber length and fiber content were evaluated from compaction test, direct shear test, uniaxial test, california bearing ratio(CBR) test. Fibrillated type fiber, 5cm long with a content of 0.5% shows 5∼30% increase of friction angle and 7∼55 percent increase of CBR value.

  • PDF

Shear strengthening of RC beams with Basalt Fiber Reinforced Polymer (BFRP) composites

  • Kar, S.;Biswal, K.C.
    • Advances in concrete construction
    • /
    • v.10 no.2
    • /
    • pp.93-104
    • /
    • 2020
  • Basalt fiber is an eco-friendly fiber and comparatively newer to the world of fiber-reinforced polymer (FRP) composites. A limited number of studies have been reported in the literature on the strengthening of reinforced concrete (RC) beams with basalt fiber reinforced polymer (BFRP). The present experimental work explores the feasibility of using the BFRP strips for shear strengthening of the RC beams. The strengthening schemes include full wrap and U-wrap. A simple mechanical anchorage scheme has been introduced to prevent the debonding of U-wrap as well as to utilize the full capacity of the BFRP composite. The effect of varying shear span-to-effective depth (a/d) ratio on the behavior of shear deficient RC beams strengthened with BFRP strips under different schemes is examined. The RC beams were tested under a four-point loading system. The study finds that the beams strengthened with and without BFRP strips fails in shear for a/d ratio 2.5 and the enhancement of the shear capacity of strengthened beams ranges from 5% to 20%. However, the strengthened beams fail in flexure, and the control beam fails in shear for a higher a/d ratio, i.e., 3.5. The experimental results of the present study have been compared with the analytical study and found that the latter gives conservative results.

Capacity Evaluation of High Strength SFRC Beams according to Shear Span to Depth Ratio (전단경간비에 따른 고강도 SFRC보의 성능 평가)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.76-83
    • /
    • 2014
  • The purpose of this study is to evaluate the shear strengthening effect of steel fiber in high strength SFRC beams. For this purpose, 13th specimens are prepared and structural tests are performed. Testing variables are shear span to depth ratio, steel fiber volume fraction, shear strengthening ratio in 60 MPa SFRC concrete. From the reviewing of previous researches and analyzing of material and member test results, shear span to depth ratio 2.5 and steel fiber volume fraction 1.0% can be having a maximum strengthening effect in steel fiber. Proposed shear strength estimation equation, which is considering steel fiber strengthening and shear span to depth ratio effect, underestimate the shear capacity of high strength SFRC beams. Therefore a detailed research on strength characteristics of high strength SFRC beams are needed.

The Compaction and Compressive Strength Properties of CSG Material Reinforced Polypropylene Fiber (폴리프로필렌 섬유 보강 CSG 재료의 다짐 및 압축강도 특성)

  • Kim, Young-Ik;Yeon, Kyu-Seok;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.4
    • /
    • pp.73-81
    • /
    • 2010
  • The cemented sand and gravel (CSG) method is a construction technique that adds cement and water to rock-like materials, such as rivered gravel or excavation muck which can be obtained easily at areas adjacent to dam sites. This study was performed to evaluate the compaction and compressive strength properties of stress-strain, elastic modulus and fracture mode CSG materials reinforced polypropylene fiber. Polypropylene fiber widely used for concrete reinforcement is randomly distributed into cemented sand. The two types of polypropylene fiber (monofillament and fibrillated fiber) were used and fiber fraction ratio was 0, 0.2 %, 0.4 %, 0.6 % and 0.8 % by the weight of total dry soil. The effect of fiber fraction ratio and fiber shape on compaction and compressive strength were investigated. The optimum moisture contents (OMC) of CSG material increased as fiber fraction increased and the dry density of CSG material decreased as fiber fraction. Also, the maximum increase in compressive strength was obtained at 0.4 % content of monofillament and fibrillated fiber. CSG material behaviour was controlled not only by fiber fraction but also fiber distribution, fiber shape and fiber type.

The Influence of Interphase Condition and Fiber Content on the Dynamic Properties of Short-fiber Reinforced Rubber (계면상 조건과 단섬유 함유량이 강화고무의 동적 특성에 미치는 영향)

  • 류상렬;이동주
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.30-37
    • /
    • 2000
  • The dynamic properties of short-fiber reinforced Chloroprene rubber have been studied as functions of interphase conditions and fiber content. The loss factor generally decreased with fiber content and showed different patterns according to interphase conditions. The better interphase condition showed the lower loss modulus, $E_2$. Also, the dynamic ratio decreased with fiber content and rapidly decreased in the case of double coatings, i.e., model C. Therefore, the short-fiber reinforced rubber could have the better isolation in frequency ratio($\sqrt{2}$ min.) compared to frequency ratio($\sqrt{2}$ max.). And we have investigate the possibility of applying short-fiber reinforced rubber to automotive engine mount.

  • PDF

Effect of strain level on strength evaluation of date palm fiber-reinforced sand

  • Bahrami, Mohammad;Marandi, Seyed Morteza
    • Geomechanics and Engineering
    • /
    • v.21 no.4
    • /
    • pp.327-336
    • /
    • 2020
  • Conventional researches on the behavior of fiber-reinforced and unreinforced soils often investigated the failure point. In this study, a concept is proposed in the comparison of the fiber-reinforced with unreinforced sand, by estimating the strength and strength ratio at different levels of strain. A comprehensive program of laboratory drained triaxial compression test was performed on compacted sand specimens, with and without date palm fiber. The fiber inclusion used in triaxial test specimens was form 0.25%-1.0% of the sand dry weight. The effect of the fiber inclusion and confining pressure at 0.5%, 1.0%, 1.5%, 3.0%, 6.0%, 9.0%, 12%, and 15% of the imposed strain levels on the specimen were considered and described. The results showed that, the trend and magnitude of the strength ratio is different for various strain levels. It also implies that, using failure strength from peak point or the strength corresponding to the axial strain of approximately 15% for evaluating the enhancement of strength or strength ratio, due to the reinforcement, may cause hazard and uncertainty in practical design. Therefore, it is necessary to consider the strength of fiber-reinforced specimen at the imposed strain level, compared to the unreinforced specimen.

Mechanical Properties of Fiber Reinforced Rapid-Setting Cement Mortars (초속경섬유보강모르타르의 역학적 특성)

  • Oh, Byung-Hwan;Jang, Kyu-Hyoun;Shin, Kyung-Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.341-344
    • /
    • 2005
  • Recently, the application of Rapid Setting Cement has been gradually increased as an important construction. However, Rapid Setting Cement shows brittle failure. Therefore, in this study, tests are carried out using Rapid Setting Cement containing fiber in order to improve such a poor property. silica-cement ratio are varied. According to experimental results, Fiber reinforced Rapid -Setting Cement showed the high ductility and strain capacity regardless of silica-cement ratio. With 0.5 silica-cement ratio, a bending strength is the highest.

  • PDF