• 제목/요약/키워드: Fiber Optics

Search Result 604, Processing Time 0.023 seconds

Near field scanning optical interferometer using facet reflection of a tapered optical fiber (광섬유 탐침의 반사를 이용한 파면 분석 근접장 주사 광간섭계)

  • 유장훈;임상엽;이현호;박승한
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.3
    • /
    • pp.248-253
    • /
    • 2004
  • We propose a near- field scanning optical interferometer (NSOI) based on the facet reflection of a nano-sized moveable tapered optical fiber. The interferometer can measure the position and the wave-front of a focused spot simultaneously. The interfering fringes are generated by the reflected beams from the sample surface and from the fiber facet. The wave-front analysis at the focusing position is obtained by using a phase shifting technique with a four-step algorithm. It is found that the resolution for controlling the focal position of our proposed NSOI is less than λ/3 and the measured wave-front aberration at the focal position is in good agreement with the ones obtained by a Twyman-Green interferometer.

Hybrid Square-Lattice Photonic Crystal Fiber with Broadband Single-Mode Operation, High Birefringence, and Normal Dispersion

  • Kim, Soeun;Lee, Yong Soo;Lee, Chung Ghiu;Jung, Yongmin;Oh, Kyunghwan
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.449-455
    • /
    • 2015
  • In this study we propose a new photonic crystal fiber (PCF) design that simultaneously offers broadband single-mode operation, high birefringence, and large normal dispersion in the optical-communication wavelength regime. The waveguide is based on a hybrid square-lattice PCF (HS-PCF) that has circular air holes of two different diameters alternating in the cladding, plus a pure silica defect at the center. The optical properties of the guided modes are analyzed numerically by the finite-element method (FEM) with a perfectly matched layer as the boundary condition. The optimized HS-PCF has a dispersion coefficient of $-601.67\;ps\;nm^{-1}\;km^{-1}$ and a high birefringence of $1.025{\times}10^{-2}$ at $1.55{\mu}m$. In addition, over the S+C+L+U wavelength bands the proposed HS-PCF with ultraflat birefringence with a slope on the order of $10^{-5}$.

Measurement of Primary-mirror Vertex Coordinates for a Space Camera by Using a Computer-generated Hologram and a Theodolite (컴퓨터 제작 홀로그램과 데오도라이트를 이용한 인공위성 카메라 주 반사경의 정점 좌표 측정)

  • Kang, Hye-Eun;Song, Jae-Bong;Yang, Ho-soon;Kihm, Hagyong
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.4
    • /
    • pp.146-152
    • /
    • 2017
  • Alignment of the mirrors composing a space telescope is an important process for obtaining high optical resolution and performance of the camera system. The alignment of mirrors using cube mirrors requires a relative coordinate mapping between the mirror and the cube mirror before optical-system integration. Therefore, to align the spacecraft camera mirrors, the relative coordinates of the vertex of each mirror and the corresponding cube mirror must be accurately measured. This paper proposes a new method for finding the vertex position of a primary mirror, by using an optical fiber and alignment segments of a computer-generated hologram (CGH). The measurement system is composed of an optical testing interferometer and a multimode optical fiber. We used two theodolites to measure the relative coordinates of the optical fiber located at the mirror vertex with respect to the cube mirror, and achieved a measurement precision of better than $25{\mu}m$.

Noise Loading Analysis using Volterra Kernels to Characterize Fiber Nonlinearities

  • Lee, Jong-Hyung
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.6
    • /
    • pp.246-250
    • /
    • 2012
  • We derive analytical expressions for the output spectral density and the noise power $P_{\beta}$ in noise loading analysis using Volterra kernels to characterize fiber nonlinearities. The bandwidth of the input noise source has little effect on $P_{\beta}$, but the power of the input noise source and the dispersion parameter value of the fiber have a significant effect on $P_{\beta}$. The Volterra method predicts ${\Delta}P_{\beta}[dB]$ = 30 dB/decade, which agrees very accurately over a wide range of fiber parameters compared with the numerical results by the split-step Fourier method. Therefore the Volterra method could be useful to predict the performance of a dense WDM system when we plan to upgrade fiber or increase signal power.

Effect of Chaos and Instability of Brillouin-Active Fiber Based on Optical Communication Networks

  • Kim, Yong-Kab
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.4
    • /
    • pp.272-277
    • /
    • 2013
  • In this paper the effect of instability and chaos in optical fiber networks based on the Internet is described. Nonlinear optical fiber effect especially Brillouin scattering in networks has emerged as the essential means for the construction of active optical devices used for all-optic in-line switching, channel selection, amplification, oscillation in optical communications and a host of other applications. The inherent optical feedback by the back-scattered Stokes wave in optical networks also leads to instabilities in the form of optical chaos. This paradigm of optical chaos in fiber Internet serves as a test for fundamental study of chaos and its suppression and exploitation in practical application in optical fiber communication. This paper attempts to present a survey and some of our research findings on the nature of Brillouin chaotic effect on Internet based optical communication.

Effect of Chaos and Instability of Brillouin-Active Fiber Based on Optical Communication

  • Yeom, Keong-Tae;Kim, Kwan-Kyu;Kim, Ji-Hyoung;Kim, Yong-Kab
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.1
    • /
    • pp.61-66
    • /
    • 2008
  • In this paper the effect of instability and chaos in optical fiber networks based on the Internet is described. Nonlinear optical fiber effect especially Brillouin scattering in networks has emerged as the essential means for the construction of active optical devices used for all-optic in-line switching, channel selection, amplification, oscillation in optical communications and a host of other applications. The inherent optical feedback by the back-scattered Stokes wave in optical networks also leads to instabilities in the form of optical chaos. This paradigm of optical chaos in fiber Internet serves as a test for fundamental study of chaos and its suppression and exploitation in practical application in optical fiber communication. This paper attempts to present a survey and some of our research findings on the nature of Brillouin chaotic effect on Internet based optical communication.

  • PDF

Optical-effect Analysis of Nanoscale Collagen Fibers

  • Lee, Myoung-Hee;Kim, Young Chul
    • Current Optics and Photonics
    • /
    • v.4 no.2
    • /
    • pp.141-147
    • /
    • 2020
  • To understand the cause of the high light transmittance of the human eye, the optical effects of the collagen fibers of the stroma layer, which constitute the majority of the cornea, were analyzed. These collagen fibers, approximately 20 nm in diameter, have a regular arrangement. Accordingly, the optical properties of the collagen fibers and the fiber layer were analyzed by simulation. A standing wave was formed in the incident space by the overlapping incident light and the light reflected by the plate. In addition, it was confirmed that when the collagen fibers are arranged in a layer, the light transmittance periodically changes, depending on the number of fiber layers. The standing wave was formed in the incident space, and the light's intensity distribution was changed by the nanoscale collagen fibers in the section with the collagen layer, which affected the transmittance. To explain this phenomenon, the collagen fiber was defined as a second light source, and an attempt was made to describe the simulation results in terms of overlap of the incident light with the light emitted from the collagen fiber.

All-optical gain control in erbium-doped fiber amplifier using a fiber grating (광섬유격자를 이용한 Erbium 첨가 광섬유 증폭기의 광학적 이득제어)

  • 박희갑
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.58-62
    • /
    • 1997
  • A new, simple lasing loop configuration employing a fiber grating was proposed and demonstrated for all-optical gain control of erbium-doped fiber amplifier. The lasing loop was designed such that the fiber grating acts as a notch filter to cutoff the lasing light as well as selects the lasing wavelength. The operating gain was clamped to the same level as the loop loss and it could be varied with a tunable directional coupler in the loop. It is believed that this type of gain-controlled erbiumdoped fiber amplifier can have several advantages when used in wavelength-division-multiplexed transmission systems.

  • PDF

Measurement method for profiling residual stress of an optical fiber (광섬유의 잔류응력 측정 방법)

  • 박용우;백문철;진애경;백운출;김덕영
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.219-223
    • /
    • 2003
  • A novel method was proposed for determining the residual stress profile of an optical fiber by using a modified polariscope. Measurement results of the axisymmetric residual stress for a conventional single-mode fiber were demonstrated by using this method. It was found that non-uniform stress is distributed in the cladding of the fiber. This means that large mechanical stress is induced as a function of temperature generated near the neck shape of the fiber preform.

Monitoring of Tunnel Structure using Fiber Bragg Grating Sensors (광섬유센서를 이용한 경부고속철도 터널의 시공중 계측)

  • Kim, Ki-Soo
    • Composites Research
    • /
    • v.22 no.1
    • /
    • pp.32-38
    • /
    • 2009
  • Recently structural monitoring using fiber optic sensors became popular, but the fiber sensors are very difficult to apply to the real structure due to difficulty of handling. In this research, we developed the fiber sensor packages easy to attach or fasten to the structures like ordinary electric sensors. We apply the fiber sensors to the real tunnel structure for measuring the strains and shape changes. The applied fiber optics sensors show the behavior of tile tunnel structures. We summarize the data from tunnel for 2 year construction period and confirm the structural behavior of tunnel.