• Title/Summary/Keyword: Fiber Fermentation

Search Result 344, Processing Time 0.029 seconds

Dietary Fiber and Large Bowel Cancer

  • Oku, Tsuneyuki
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.3
    • /
    • pp.539-549
    • /
    • 1996
  • Large bowel cancer correlates tightly to dietary factors such as dietary fiber and fat. Dietary fiber prevents the large bowel cancer in different modes of action which depend upon physicochemical and fermentable properties. Water-soluble fiber is fermented easily by intestinal microbes producing short chain fatty acids ; in contrast, water-insoluble fiber occurs effectively more rapid transit time due to greater bulk of gut content, though it is unfermentable. Not only short chain fatty acid is utilized in the proximal and distal colon as primary energy source, but also it lowers pH in the colon to normalize cellular differentiation and helps to stimulate peri staltic movement by acting as an osmotic laxative. In particular, butyric acid may also regulate gene expression and cell growth, though it is an important respiratory fuel for the colonocyte. Since dietary fiber and non-digestible oligosaccharides are the major source of butyric acid, this provides a possible link between dietary fiber and oligosaccharide and prevention of large bowel cancer. But, as with many links between dietary fiber and large bowel cancer, a direct casual association has not been established. In addition, RDA of dietary fiber which is 20~25g/day for adult Japanese, appears to be reasonable for the defecation once daily and the prevention of large bowel cancer.

  • PDF

Water Binding Capacity of Vegetable Fiber (식이섬유의 수분결합력에 관한 연구)

  • 계수경
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.3
    • /
    • pp.231-235
    • /
    • 1996
  • The water binding capacity(WC) of acid detergent fiber(ADF) was estimated. The WBC of raw vegetables ranged from 5. 1g to 24.7g water/g ADF. WBC was high in pepers and low in welsh onions. The correlation coefficients between WBC and fiber components were examined to fled which component is responsible for the deteruuning ability to bind water. The correlation coefficient between WBC and cellulose was +0.8. The binding capacity of water by fiber was affected positively by cellulose. fermentation increased in WBC of ADF. Changes of no in accordance with pH changes were evaluated at pH 2, 5.2 and 6. In all cases, WBC was high In weak acid and neutral.

  • PDF

Digestibility and fermentation rate or Alfalfa , Orchar grass with different cutting times (예취시기에 따른 Alfalfa , Orchar grass고정물의 소화율 , 발효율 및 발산속도 측정)

  • 윤재인
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.5 no.1
    • /
    • pp.84-89
    • /
    • 1985
  • Chemical composition, dry matter and cellulose digestibilities and fermentation rates of alfalfa and orchard grass cut at different time were estimated in vitro method and the results summurized as follows: 1. Crude protein, crude fiber cwc and cellulose content of Alfalfa were decreassed as advancing cutting time. Crude protein, crude fiber and cwc content of Orchard grass were decreased as advancing cutting time up to 3 cutting, but crude protein was slightly increased at 4th cutting, crude fiber and cellulose content were higher at 2nd cutting, but decreased thereafter. 2. DM digestibility of Alfalfa was 51.80, 51.86, 52.92 and 59.52% at 1, 2, 3 and 4th cutting time, respectibly, thus slightly increased as advancing cutting time, and cellulose digestibility of Alfalfa was not much different with different cutting time. DM digestibility of Orchard grass was 62.21, 66.10, 60.95 and 66.32% at 1, 2, 3 and 4th cutting time, respectibly, and cellulose digestibility of Orchard grass was slightly increased at 3rd cutting time and then increased at 4th cutting time. 3. Fermentation rate of DM of alfalfa was the highest 1st cutting time (0.83%/hr.) and was not different at 3 and 4th cutting time. Cellulose fermentation rate of Alfalfa was the highest at 1st cutting time (1.29%/hr.), decreased at 2 and 3th and then increased at 4th cutting time. Fermentation rate of DM of Orchard grass was 1.42, 1.58, 1.60 and 1.57%/hr. and of cellulose was the highest at 2nd cutting time (1.77%/hr.)

  • PDF

The Study of Fermented Chestnut Meal and Its Rumen Fermentation Characteristics (밤의 부위별 발효사료 제조 및 이들의 반추위 내 발효특성에 관한 연구)

  • Joo, Young-Ho;Kim, Dong-Hyeon;Lee, Hyuk-Jun;Lee, Seong-Shin;Paradhipta, Dimas H.V.;Ha, Chang-Ju;Kim, Sam-Churl
    • Journal of Environmental Science International
    • /
    • v.28 no.6
    • /
    • pp.527-533
    • /
    • 2019
  • The aim of present study was to investigate the effect of three types of Chestnut Meals (CM) on chemical composition and rumen fermentation characteristics of the fermented diet. The inoculants consisted of Lactobacillus acidophilus, Bacillus subtilis, and Sacaromyces cerevisiae and were applied to three different types of CM; Whole Chestnut (WC), endodermis (EN), and kernel (KE). All types of CMs were ensiled at $39^{\circ}C$ for 0, 1, 2, 4, or 6 days. After ensiling, the fermented CMs were sub-sampled for laboratory assays. On day six of fermentation, counts of the lactic acid-producing Bacillus subtilis, and yeast were higher (P<0.05) in WC than in the other CM types. On day four, KE had higher (P<0.05) crude protein content but lower (P<0.05) neutral detergent fiber and acid detergent fiber contents than the other treatments. In terms of rumen digestibility, KE had the highest (P<0.05) in vitro digestibility of dry matter (IVDMD), neutral detergent fiber digestibility (IVNDFD), total volatile fatty acid (VFA), propionate, butyrate concentrations, and total gas volume, as well as the lowest (P<0.05) acetate concentration. On the other hand, EN had the highest (P<0.05) pH and ammonia-N concentration in the rumen. In the rumen, even though WC application produced the highest microbial count and fermentation characteristics, it did not have a beneficial effect on rumen digestibility. Therefore, this study concluded that application of KE could be recommended due to the observed improvements in IVDMD and IVNDFD.

Effect of Lactic Acid Bacteria Treatment on Nutritive Value and In Vitro Ruminal Fermentation of Italian Ryegrass (Lolium multiflorum L.) Silage

  • Lee, Kihwan;Marbun, Tabita Dameria;Kim, Suyeon;Song, Jaeyong;Kwon, Chan Ho;Yoon, Duhak;Kang, Jungsun;Lee, Chanho;Cho, Sangbuem;Kim, Eun Joong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.3
    • /
    • pp.182-189
    • /
    • 2020
  • This study was conducted to evaluate the effect of lactic acid bacteria (LAB) inoculation to domestically-cultivated Italian ryegrass (IRG) on silage fermentation and in vitro ruminal fermentation. There were six treatments based on the LAB inoculants: 1) no addition of LAB (negative control: NC), additions of 2) commercially-available LAB (positive control: PC), 3) Lactobacillus plantarum (LPL), 4) L. paracasei (LPA), 5) L. acidophilus (LA), and 6) L. pentosus (LPT). All treatments were inoculated at a concentration of 106 CFU/g and ensiled for 3, 7, 21, and 42 days in triplicate and analyzed for nutritive values when ensiling was terminated. Day 42 silage from all treatments were also examined for in vitro ruminal fermentation. After 42 days, LAB-inoculated silages had higher (P<0.05) lactic acid concentration compared to the NC. In terms of nutritive values, the silages treated with LPA, LA, and LPT showed higher (P<0.05) crude protein and lower (P<0.05) neutral detergent fiber and acid detergent fiber content compared to the rest of the treatment. In vitro ruminal dry matter degradability was not affected by LAB addition. However, LAB-treated IRG had shown higher (P<0.05) ammonia-N compared with that of the NC. LPA had shown the highest (P<0.05) volatile fatty acid concentration among the LAB examined. In conclusion, the addition of a single strain of LAB appeared to produce a quality IRG silage compared with the NC and the PC. Among the strains examined, LPA seemed to be superior to the others.

Effect of Additives and Fermentation Periods on Chemical Composition and In situ Digestion Kinetics of Mott Grass (Pennisetum purpureum) Silage

  • Nisa, Mahr-un;Touqir, N.A.;Sarwar, M.;Khan, M. Ajmal;Akhtar, Mumtaz
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.6
    • /
    • pp.812-815
    • /
    • 2005
  • This study was conducted to see the influence of additives and fermentation periods on Mott grass silage (MGS) characteristics, its chemical composition and to compare the digestion kinetics of Mott grass (MG) and MGS in Nili buffaloes. Mott grass chopped with a locally manufactured chopper was ensiled using two additives, cane molasses and crushed corn grains each at 2, 4 and 6% of forage DM for 30 and 40 days in laboratory silos. The pH, lactic acid concentration, dry matter (DM), crude protein and fiber fractions of MGS were not affected by the type or level of additive and fermentation periods. The non-significant pH lactic acid concentration, and chemical composition of MGS indicated that the both molasses and crushed corn were utilized at similar rate for the growth of lactic acid bacteria and production of organic acids. The MG ensiled with molasses at 2% of fodder DM for 30 days was screened out for in situ digestion kinetics in Nili buffaloes. Ruminal DM and neutral detergent fiber (NDF) degradabilities of MGS were significantly (p<0.05) higher than that of MG. The DM and NDF rate of degradation, lag time and extent of degradation was nonsignificant between MGS and MG. The higher ruminal degradation of DM and NDF of MGS than MG was probably a reflection of fermentation of MG during ensilation that improved its degradability by improving the availability of easily degradable structural polysaccharides to ruminal microbial population. The results in the present study have indicated that MG ensiled with either 2% molasses or 2% crushed corn for 30 days has better nutritive value for buffalo.

Effect of addition of lactic acid bacteria on fermentation quality of Miscanthus sinnensis silage

  • Choi, Ki-Choon;Srigopalram, Srisesharam;Ilavenil, Soundharrajan;Kuppusamy, Palaniselvam;Park, Hyung-Su;Kim, Ji Hye;Yoon, Yong Hee;Kim, Young Jin;Jung, Jeong Sung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.284-284
    • /
    • 2017
  • The aim of the study is to investigate the effect of new lactic acid bacteria as an additive for improving the quality of the Miscanthus sinnensis silage fermentation. The percentage of crude protein (CP), acid detergent fiber (ADF), and neutral detergent fiber (NDF) in lactic acid bacteria (LAB) inoculated silage showed similar to the control. The pH of Miscanthus sinnensis (MS) silage in the treatment of LAB inoculation significantly decreased as compared to control (p<0.05). The content of lactic acid in the treatment of LAB inoculation significantly increased (p<0.05) as compared to control, but, the content of acetic acid was reduced in the treatment of LAB inoculation. Also, numbers of the lactic acid bacteria population were higher in LAB-treated silage as compared to control (p<0.05). The present study suggested that an addition of lactic acid bacteria significantly improved the quality fermentation in Miscanthus sinnensis silage.

  • PDF

Prediction of the Chemical Composition and Fermentation Parameters of Winter Rye Silages by Near Infrared Spectroscopy

  • Park, Hyung Soo;Lee, Sang Hoon;Choi, Ki Choon;Lim, Young Cheol;Kim, Ji Hea;Lee, Ki Won;Choi, Gi Jun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.3
    • /
    • pp.209-213
    • /
    • 2014
  • This study was carried out to explore the accuracy of near infrared spectroscopy (NIRS) for the prediction of chemical and fermentation parameters of whole crop winter rye silages. A representative population of 216 fresh winter rye silages was used as database for studying the possibilities of NIRS to predict chemical composition and fermentation parameters. Samples of silage were scanned at 1 nm intervals over the wavelength range 680~2,500 nm and the optical data recorded as log 1/Reflectance (log 1/R) and scanned in fresh condition. NIRS calibrations were developed by means of partial least-squares (PLS) regression. NIRS analysis of fresh winter rye silages provided accurate predictions of moisture, acid detergent fiber (ADF), neutral detergent fiber (NDF), crude protein (CP) and pH as well as lactic acid content with correlation coefficients of cross-validation ($R^2cv$) of 0.96, 0.86, 0.79, 0.85, 0.82 and 0.78 respectively and standard error of cross-validation (SECV) of 1.89, 2.02, 2.79, 1.14, 1.47 and 0.46 % DM respectively. Results of this experiment showed the possibility of NIRS method to predict the chemical parameters of winter rye silages as routine analysis method in feeding value evaluation and for farmer advice.

Evaluation of feed value of a by-product of pickled radish for ruminants: analyses of nutrient composition, storage stability, and in vitro ruminal fermentation

  • Jeon, Seoyoung;Sohn, Keun-Nam;Seo, Seongwon
    • Journal of Animal Science and Technology
    • /
    • v.58 no.9
    • /
    • pp.34.1-34.9
    • /
    • 2016
  • Background: By-products of pickled radish (BPR) are considered food waste. Approximately 300 g/kg of the total mass of raw materials becomes BPR. Production of pickled radish has grown continuously and is presently about 40,000 metric tons annually in Korea. The objective of the present study was thus to explore the possibility of using BPR as a ruminant feed ingredient. Results: BPR contained a large amount of moisture (more than 800 g/kg) and ash, and comprised mostly sodium (103 g/kg DM) and chloride (142 g/kg DM). On a dry matter basis, the crude protein (CP) and ether extract (EE) levels in BPR were 75 g/kg and 7 g/kg, respectively. The total digestible nutrient (TDN) level was 527 g/kg and the major portion of digestible nutrients was carbohydrate; 88 % organic matter (OM) was carbohydrate and 65 % of total carbohydrate was soluble or degradable fiber. The coefficient of variation (CV) of nutrient contents among production batches ranged from 4.65 to 33.83 %. The smallest CV was observed in OM, and the largest, in EE. The variation in CP content was relatively small (10.11 %). The storage stability test revealed that storage of BPR at $20^{\circ}C$ (room temperature) might not cause spoilage for 4 d, and possibly longer. If BPR is refrigerated, spoilage can be deferred for 21 d and longer. The in vitro ruminal fermentation study showed that substitution of annual ryegrass straw with BPR improved ruminal fermentation, as evidenced by an increase in VFA concentration, DM degradability, and total gas production. Conclusion: The major portion of nutrients in BPR is soluble or degradable fiber that can be easily fermented in the rumen without adverse effects, to provide energy to ruminant animals. Although its high sodium chloride content needs to be considered when formulating a ration, BPR can be successfully used as a feed ingredient in a ruminant diet, particularly if it is one component of a total mixed ration.

Effect of different harvesting times on the nutritive value and fermentation characteristics of late and early-maturing forage oats by rumen microbes

  • Zhang, Yan;Lee, Ye Hyun;Nogoy, Kim Margarette;Choi, Chang Weon;Kim, Do Hyung;Li, Xiang Zi;Choi, Seong Ho
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.125-135
    • /
    • 2019
  • Late-maturing Dark Horse, and early-maturing High Speed oat varieties were seeded on March 3, 2016 and harvested on three periods: May 31, June 10, and June 20 coded as early, mid, and late-harvest, respectively. Dried and ground samples were subjected to chemical analysis to determine nutritional values such as crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), ether extract (EE), organic matter (OM), and total digestible nutrient (TDN). Effective degradability (ED) of nutrients and fermentation characteristics including volatile fatty acid (VFA) composition, pH, gas production, and ammonia-N concentration were evaluated through an in vitro digestion method. Varieties of oat hays showed significant difference in terms of nutritional value, ED, and fermentation characteristics. Dark Horse showed higher CP and OM, and lower EE contents than High Speed. Dark Horse also showed higher EDDM (dry matter), NDF, ADF, and OM than High Speed, and although High Speed showed higher pH and ammonia-N, it had lower gas and total VFA production than Dark Horse. However, in terms of harvest period, significant difference was only observed in Dark Horse where early-harvest increased the CP, and late-harvest increased the NDF and OM contents. In addition, early-harvest of Dark Horse increased the EDDM and EDNDF of the forage. Therefore, early-harvest of late-maturing Dark Horse would give better nutrient efficiency than High Speed. Allowing Dark Horse to advance in maturity would decrease its nutrient productivity and efficiency.