Browse > Article
http://dx.doi.org/10.5322/JESI.2019.28.6.527

The Study of Fermented Chestnut Meal and Its Rumen Fermentation Characteristics  

Joo, Young-Ho (Division of Applied Life Science (BK21Plus, Insti. of Agric. & Life Sci.), Gyeongsang National University)
Kim, Dong-Hyeon (Department of Animal Sciences, University of Florida)
Lee, Hyuk-Jun (Division of Applied Life Science (BK21Plus, Insti. of Agric. & Life Sci.), Gyeongsang National University)
Lee, Seong-Shin (Division of Applied Life Science (BK21Plus, Insti. of Agric. & Life Sci.), Gyeongsang National University)
Paradhipta, Dimas H.V. (Division of Applied Life Science (BK21Plus, Insti. of Agric. & Life Sci.), Gyeongsang National University)
Ha, Chang-Ju (Livestock Division, Gyeongnam Provincial Government)
Kim, Sam-Churl (Division of Applied Life Science (BK21Plus, Insti. of Agric. & Life Sci.), Gyeongsang National University)
Publication Information
Journal of Environmental Science International / v.28, no.6, 2019 , pp. 527-533 More about this Journal
Abstract
The aim of present study was to investigate the effect of three types of Chestnut Meals (CM) on chemical composition and rumen fermentation characteristics of the fermented diet. The inoculants consisted of Lactobacillus acidophilus, Bacillus subtilis, and Sacaromyces cerevisiae and were applied to three different types of CM; Whole Chestnut (WC), endodermis (EN), and kernel (KE). All types of CMs were ensiled at $39^{\circ}C$ for 0, 1, 2, 4, or 6 days. After ensiling, the fermented CMs were sub-sampled for laboratory assays. On day six of fermentation, counts of the lactic acid-producing Bacillus subtilis, and yeast were higher (P<0.05) in WC than in the other CM types. On day four, KE had higher (P<0.05) crude protein content but lower (P<0.05) neutral detergent fiber and acid detergent fiber contents than the other treatments. In terms of rumen digestibility, KE had the highest (P<0.05) in vitro digestibility of dry matter (IVDMD), neutral detergent fiber digestibility (IVNDFD), total volatile fatty acid (VFA), propionate, butyrate concentrations, and total gas volume, as well as the lowest (P<0.05) acetate concentration. On the other hand, EN had the highest (P<0.05) pH and ammonia-N concentration in the rumen. In the rumen, even though WC application produced the highest microbial count and fermentation characteristics, it did not have a beneficial effect on rumen digestibility. Therefore, this study concluded that application of KE could be recommended due to the observed improvements in IVDMD and IVNDFD.
Keywords
Chestnut meal; Fermented diet; Fermentation indices; Rumen;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Shin, H. T., Keum, D. H., Lee, H. W., Rhee, D. K., Hwnag, B. S., Lee, L. H., 2001, Screenging of yeasts for the development of direct-fed microbials, Kor. J. Anim. Sci. Technol., 43, 721-726.
2 Statistics Korea, 2015, Livestock production cost survey.
3 Jeon, B. G., 1998, A Study on the production of chestnut powder in the inner shell (endo crap) of a chestnut from its treatment plant, J. Kor. Solid Wastes Eng., 15, 57-65.
4 AOAC, 1990, Official methods of analysis, 15th ed., Association of Official Analytical Chemists, Arlington, VA, USA.
5 Beuvink, J. M. W., Spoelstra, S. F., Hogendorp, R. J., 1992, An Automated method for measuring time-course of gas production of feedstuffs incubated with buffered rumen fluid, Neth. J. Agric. Sci., 40, 401-407.
6 Cha, S. W., Oh, H. M., Park, N. S., Cho, C. H., Lee, B. D., Lee, H. S., Lee, S. K., 2011, Effect of Yukmijiohwangtang meal silage on the performance of Hanwoo steer, CNU. J. Agri. Sci., 38, 263-268.
7 Chaney, A. L., Marbach, E. P., 1962, Modified reagents for determination of urea and ammonia, Clim. Chem., 8, 130-132.   DOI
8 Ciesla, W. M., 2002, Non-wood forest products from temperate broad-leaved trees, Food Agric Organ, UN, Rome, Italy.
9 De Vasconcelos, M. C. B. M., Bennett, R. N., Rosa, E. A. S., Ferreira-Cardoso, J. V., 2010, Composition of European chestnut (Castanea sativa Mill.) and association with health effects: fresh and processed products, J. Sco. Food Agric., 90, 1578-1589.   DOI
10 Demeyer, D. I., 1981, Rumen microbes and digestion of plant cell walls, Agric. Environ., 6, 294-337.   DOI
11 FAOSTAT, Food and Agriculture Organization of the United States, 2010, Available: http://faostat.fao.org/site/339/default.aspx.
12 Ghanem, N. B., Yusef, H. H., Mahrouse, H. K., 2000, Production of Aspergillus terreus xylanase in solid-state cultures: application of the Plackett-Burmann experimental design to evaluate nutritional requirements, Bioresour. Technol., 73, 113-121.   DOI
13 Golueke, C. G., Diaz, I. F., 1991, Inoculants and enzymes. In: The staff of Biocycle J. Waste Recycling, Editorm The Biocycle Guide to the Art and Science of Composting, The JG Press, Inc., Emmaus, Pensylvania, USA.
14 Stronach, S. M., Rudd, T., Lester, J. N., 1986, Anaerobic digestion process in industrial waste water treatment, Springe-verlag, Berlin Heidelberg.
15 Van Soest, P. J., Robertson, J. B., Lewis, B. A., 1991, Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition, J. Dairy Sci., 74, 3583-3597.   DOI
16 Fuller, R., 1989, Probiotics in man and animals, A Revies. J. Appl. Bacteriol., 66, 369-377.
17 Adesogan, A. T., 2005, Improving forage quality and animal performance with fibrolytic enzymes, 16th Florida Ruminant Nutrition Symposium, University of Florida, Gainesville, FL, USA.
18 Joo, Y. H., Jeong, H. H., Kim, D. H., Lee, H. J., Lee, S. S., Kim, S. B., Kim, S. C., 2017, Effects of replacing mushroom by-product with tofu by-product on the chemical composition, microbes, and rumen fermentation indices of fermented diets, J. Envir. Sci. Inter., 26, 651-659.   DOI
19 Jouany, J. P., Morgavi, D. P., 2007, Use of 'natural' products as alternatives to antibiotic feed additives in ruminant production. Animal, 1, 1443-1466.   DOI
20 Kim, D. H., Joo, Y. H., Lee, H. J., Lee, S. S., Paradhipta, H. V. D., Choi, N. J., Kim, S. C., 2018, Effects of inoculant application level on chemical compositions of fermented chestnut meal and its rumen fermentation indices, J. Envir. Sci. Inter., 27, 333-340.   DOI
21 Moon, G. B., Kim, S. B., Cha, S. W., Lee, B. D., Lee, S. K. M., 2007, Improvement of the quality of herbal medicine meal (Ojeoksan) silage by molasses supplementation, Kor. J. Agri. Sci., 34, 77-84.
22 Muck, R. E., Dickerson, J. T., 1988, Storage temperature effects on proteolysis in alfalfa silage, Trans. ASAE, 31, 1005-1009.   DOI
23 Mueller-Harvey, I., 2006, Unravelling the conundrum of tannins in animal nutrition and health, J. Sci. Food Agric., 86, 2010-2037.   DOI
24 SAS, 2004, SAS User's Guide. Statistical Analysis System Institute, Inc., Cary, N. C.