• Title/Summary/Keyword: Fiber Damage

Search Result 824, Processing Time 0.029 seconds

Damage and Failure Detection of CFRP Using Optical Fiber Vibration Sensor (광섬유 진동센서를 이용한 탄소섬유강화 복합재료의 손상 및 파손검출)

  • 양유창;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.254-257
    • /
    • 2001
  • An intensity-based optical fiber vibration sensor is applied to detect and evaluate damages and fiber failure of composites. The optical fiber vibration sensor is constructed by placing two cleaved fiber end, one of which is cantilevered in a hollow glass tube. The movement of the cantilevered section lags behind the rest of the sensor in response to an applied vibration and the amount of light coupled between the two fibers is thereby modulated. Vibration characteristics of the optical fiber vibration sensor are investigated. Surface mounted optical fiber vibration sensor is used in tensile and indentation test. Experimental results show that the optical fiber sensor can detect damages and fiber failure of composites correctly.

  • PDF

Damage and Failure Detection of Composites Using Optical Fiber Vibration Sensor (광섬유 진동센서를 이용한 복합재료의 손상 및 파손검출)

  • Yang, Y.C.;Han, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.547-552
    • /
    • 2001
  • An intensity-based optical fiber vibration sensor is applied to detect and evaluate damages and fiber failure of composites. The optical fiber vibration sensor is constructed by placing two cleaved fiber end, one of which is cantilevered in a hollow glass tube. The movement of the cantilevered section lags behind the rest of the sensor in response to an applied vibration and the amount of light coupled between the two fibers is thereby modulated. Vibration characteristics of the optical fiber vibration sensor are investigated. Surface mounted optical fiber vibration sensor is used in tensile and indentation test. Experimental results show that the optical fiber sensor can detect damages and fiber failure of composites correctly.

  • PDF

An Experimental Study on the Measurement of Electrical Conductivity of Cementitious Composites According to the Type of Steel Fiber (강섬유 종류에 따른 시멘트 복합체의 전기전도도 측정에 대한 실험적 연구)

  • Lee, Yae-Chan;Kim, Gyu-Yong;Nam, Jeong-Soo;Lee, Sang-Kyu;Shu, Dong-Kyun;Eu, Ha-Min
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.191-192
    • /
    • 2020
  • The purpose of this study is to measure the electrical conductivity of cementitious composites as an early step to obtain shielding performance by mixing various type of steel fiber into cementitious composites, the main building material of protection facility, to shield electromagnetic pulse (EMP) damage. Fiber such as conductors as amorphous metallic fiber, hooked steel fiber, and smooth steel fiber are mixed into cementitious composites to give electrical conductivity and measure the impedance of concrete using LCR meter. By doing this, the electrical conductivity of each type of steel fiber reinforced cementitious composites (FRCC) is compared.

  • PDF

Influence of Residual Bending Fatigue Strength on Impact Damage of CFRP Composites (CFRP 적층판의 충격손상이 잔류 굽힘 피로강도에 미치는 영향)

  • Yang, Yong Jun;Yang, In Young
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.7-12
    • /
    • 2015
  • CFRP composites are used as primary structural members in various industrial fields because their specific strength and specific stiffness are excellent in comparison to conventional metals. Their usage is expanding to high added-value industrial fields because they are more than 50% lighter than metals, and have excellent heat resistance and wear resistance. However, when CFRP composites suffer impact damage, destruction of fiber and interface delamination occur. This causes an unexpected deterioration of strength, and for this reason it is very difficult to ensure the reliability of the excellent mechanical properties. Therefore, for the destruction mechanism in bending with impact damage, this study investigated the reinforcement data regarding various external loads by identifying the consequential strength deterioration. Specimens were damaged by impact with a steel ball propelled by air pressure. Decrease in bending strength caused by the tension and compression of the impact side, and depending on the lamination direction of fiber and interface inside the specimen. From the bending test it was found that the bending strength reduced when the impact energy increased. Especially in the case of compression on the impact side, as tensile stress occurred at the damage starting point, causing rapid failure and a substantially reduced failure strength.

Changes in the Neurogenesis and Axonal Sprouting in the Organotypic Hippocampal Slice Culture by Aβ25-35 Treatment

  • Jung, Yeon Joo;Jiang, Hui Ling;Lee, Kyung Eun
    • Applied Microscopy
    • /
    • v.42 no.4
    • /
    • pp.200-206
    • /
    • 2012
  • Induction of neurogenesis can occur in the hippocampus in response to various pathological conditions, such as Alzheimer's disease. The aim of this study was to investigate the changes that occur in endogenous neural stem cells in response to amyloid beta $(A{\beta})_{25-35}$-induced neuronal cell damage in organotypic hippocampal slice cultures. Cresyl violet staining and Fluoro-Jade B staining were used to detect neuronal cell damage and changes of mossy fiber terminals were observed by Timm's staining. The immunofl uorescence staining was used to detect the newly generated cells in the subgranular zone (SGZ) of the dentate gyrus with specific marker, 5-bromo-2'-deoxyuridine (BrdU), Ki-67, Nestin, and doublecortin (DCX). In compared to control slices, neuronal cell damage was observed and the mossy fibers were expanded to CA3 area by treatment with $A{\beta}_{25-35}$. Ki-67/Nestin- and BrdU/DCX-positive cells were detected in the SGZ. In conclusion, these results demonstrate that $A{\beta}$-induced neuronal damage results in an increase in endogenous neural stem cells in rat hippocampal slice cultures not only for gliosis but also for neurogenesis.

Evaluation of Residual Strength of Carbon/Epoxy Laminates Due to Low Velocity Impact Damage (Carbon/Epoxy 적층판의 저속충격손상에 따른 잔류강도 평가)

  • Kang, Min-Sung;Choi, Jung-Hun;Kim, Sang-Young;Koo, Jae-Mean;Seok, Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.102-108
    • /
    • 2010
  • Recently, carbon fiber reinforced plastic(CFRP) composite materials have been widely used in various fields of engineering because of its advanced properties. Also, CFRP composite materials offer new design flexibilities, corrosion and wear resistance, low thermal conductivity and increased fatigue life. However CFRP composite materials are susceptible to impact damage due to their lack of through-thickness reinforcement and it causes large drops in the load-carrying capacity of a structure. Therefore, the impact damage behavior and subsequently load-carrying capacity of impacted composite materials deserve careful investigation. In this study, the residual strength and impact characteristics of plain-woven CFRP composites with impact damage are investigated under axial tensile test. By using obtained residual strength and Tan-Cheng failure criterion, residual strength of CFRP laminate with arbitrary fiber angle were evaluated.

Development of Progressive Failure Analysis Method for Composite Laminates based on Puck's Failure Criterion-Damage Mechanics Coupling Theories (Puck 파손기준-손상역학 연계이론을 활용한 적층 복합재료의 점진적 파손해석기법 개발)

  • Lee, Chi-Seung;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.1
    • /
    • pp.52-60
    • /
    • 2015
  • In the present study, an evaluation method for progressive failure of composite laminates has been proposed based on Puck's failure criterion and damage mechanics. The initial failure (or initiation of crack/delamination) has been assessed using Puck's failure criterion, and the progressive failure (or growth of crack/delamination) has been evaluated using fiber- and matrix-dependent damage variables. Based on Puck's failure criterion-damage mechanics coupling theories, the ABAQUS user-defined subroutine UMAT has been developed in order to analyze the progressive failure of glass/carbon fiber-reinforced composite laminates efficiently. In addition, the developed subroutine has been applied to progressive failure problem of industrial composite laminates, and the analysis results has been compared to experimental results which have been already reported in publications. It was confirmed that the simulation results were coincided well with the reported composite failure results.

Barely Visible Impact Damage Detection Analyses of CFRP by Various NDE Techniques (다양한 비파괴 측정 방법에 의한 CFRP의 BVID 분석)

  • Lim, Hyunmin;Lee, Boyoung;Kim, Yeong K.
    • Composites Research
    • /
    • v.26 no.3
    • /
    • pp.195-200
    • /
    • 2013
  • This study aims to detecting and analyzing the defects of damaged carbon fiber reinforced composites after impacts, particularly focusing on barely visible impact damages. The impact test was progressed by a drop-weight machine and applied to introduce simulated damages on laminated composites used in aircrafts. Various nondestructive testing (NDT) techniques were applied to identify the defects on the specimens with different levels of impact energies. Based on the measurements data, the levels of the barely visible impacts, and the applicability and effectiveness of the detection methods were discussed. Generally, the results demonstrated that their inner damages contained bigger footprints than those on the surfaces. However, when the damage energy was low, it was found that the inner damage size could be smaller than those appeared on the surfaces.

A Study on Microscopic Damage Behavior of Carbon Fiber Sheet Reinforced Concrete using Acoustic Emission Technique (음향방출 기법을 이용한 탄소섬유시트강화 콘크리트의 미시적 손상 거동에 관한 연구)

  • 이진경;이준현;정성륜
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.62-70
    • /
    • 1999
  • It was well recognized that damages associated mainly with the aging of civil infrastructrues were one of very serious problems for assurance of safety and reliability. In recent, carbon fiber sheet(CFS) has been widely used for reinforcement and rehabitation of damaged concrete beam. However, the fundamental mechanism of load transfer and its load-resistant for carbon fiber sheet reinforced concrete are not fully understood. In this study, three point bend test has been carried out to understand the damage progress and micro-failure mechanism of CFS reinforced concretes. For these purposes, four kinds of specimens are used, that is, concrete, respectively. Acoustic Emission(AE) technique was used to evaluate the characteristics of damage progress and failure mechanism of specimens. In addititon, two-dimensional AE source location was also performed to monitor crack initiation and propagation processes for four types of these specimens.

  • PDF

A Study on the Mechanical Characteristic Change Accordance with Surface Damaged Submarine GFRP Repairing (잠수함용 GFRP 표면결함 수리에 따른 기계적 특성변화 연구)

  • Jung, Young In;Koo, Ja Gil;Lee, Yoon Suk
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.2
    • /
    • pp.257-267
    • /
    • 2020
  • Purpose: The purpose of this study is to define guideline for fiber-glass-resin-putty repairing method for submarine GFRP by comparing structural strength between normal GFRP and putty repaired GFRP. Methods: GFRP specimen tensile and flexural tests are conducted in accordance with ASTM D3039/3039M-17 and ASTM D790 Procedure A. The collected data was analysed whether satisfies its structural strength criteria. Furthermore, It is analysed to find dominant reason of structural strength changes. Results: The result of the study is as follows; flexural strength of GFRP is satisfied strength criteria for all test cases, but tensile strength is not satisfied its criteria for some cases which over 2 mm depth of surface damage. Conclusion: The fiberglass-resin-putty repairing method should be applied to under 2 mm depth of damage which is not affecting to roving fiber layer destruction in GREP laminate.