• Title/Summary/Keyword: Fiber Bragg grating sensors

Search Result 196, Processing Time 0.028 seconds

Evaluation of Signal Stability of Fiber Optic Sensors with respect to Sensor Packaging Methods in Long-Term Monitoring (장기 모니터링 환경에서 센서 패키징 방법에 따른 광섬유 센서의 신호 안정성 평가)

  • Kang, Donghoon;Kim, Heon-Young;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.4
    • /
    • pp.281-287
    • /
    • 2016
  • Fiber Bragg grating (FBG) sensors are applied in structural health monitoring (SHM) in various application fields because of their ease of multiplexing and capability of performing absolute measurements. Moreover, the packaging methods of FBG sensors accelerate their commercialization rapidly. However, long-term SHM exposes the FBG sensors to cyclic thermal loads, and a investigation is required because it finally leads to the signal instability of the FBG sensors. In this study, the effects of sensor packaging methods two methods are generally used for the FBGs: (bonding both sides of the FBG or bonding the FBG directly on signal stability of FBG sensors are investigated. Tests are conducted on specimens in a thermal chamber, over a temperature range from $-20^{\circ}C$ to $60^{\circ}C$ for 300 cycles. Signal characteristics such as Bragg wavelength, light intensity and full width at half maximum are examined and are compared with those of the FBG sensors, obtained in a previous study under direct bonding conditions. From the comparison, it is observed that the FBG sensors with bonding on both sides of the FBG demonstrate higher signal stabilities when exposed to cyclic thermal loads during long-term SHM. Consequently, it guarantees more effectiveness when packaging the FBG sensors.

Displace Measurement of the Top of Bridge Pier Using Long gauge Fiber Optic Sensor (긴 게이지길이 광섬유 FBG센서를 이용한 교각상부 거동 혹정)

  • Ki Ki-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.71-76
    • /
    • 2006
  • In this paper, a long gauge Fiber Bragg Grating (FBG) sensor system is described and long gauge FBGs are well, suited for measuring the upper parts of the bridge piers under the extremely severe movement conditions. In the experiments, we used more than 30m long FBG sensors to measure the movement of top part of the bridge piers which are separated from the main bridge by cutting the decks. With the actuator, the deck and girders were pushed and released. We checked the movement of the top of the pier while releasing the pressure of the actuator with the long gauge fiber sensor. In order to measure the movement of the upper part of the pier, the reference point must be outside of the pier. Using the optical fiber sensors, one end of the sensor is attached to the top of the pier and the other end is attached to the bottom of the next pier. The fiber sensors showed good response to the release loading and we could calculate the movement of the top part of the pear.

  • PDF

Development of Load Cell Using Fiber Brags Grating Sensors and Differential Method for Structural Health Monitoring (구조 건전성 모니터링을 위한 광섬유 브래그 격자 센서와 차동법을 적용한 로드셀 개발)

  • Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.299-307
    • /
    • 2009
  • Emerging fiber optic sensor technologies have shown great potential to overcome the difficulties associated with conventional sensors. Fiber optic sensors are immune to EM noise and electric shock and thus can be used in explosion-prone areas. Several kinds of fiber optic sensors have been developed over the last two decades to take advantage of these merits. There have also been many field applications of fiber optic sensors for structural health monitoring as NDT/HDE. However, very few sensors, particularly a load cell have been successfully commercialized. This Paper Presents a load cell using fiber Bra99 gra1ing (FBG) sensors. The shape of the load cell is a link type, and three FBG sensors are used for measuring strains at three different points. Especially, these strains are processed with a differential method in order to exclude common mode noise such as temperature. Moreover, the sensitivity, the linearity and the resolution of the load cell were successfully verified from the experiment of tension test.

A Quasi-Distributed Fiber-Optic Sensor System using an InGaAs PD Array and FBG Sensors for the Safety Monitoring of Electric Power Systems (InGaAs PD 어레이와 광섬유 격자를 이용한 준분배형 전력설비 안전진단 시스템)

  • Kim, Hyun-Jin;Park, Hyoung-Jun;Song, Min-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.2
    • /
    • pp.86-91
    • /
    • 2010
  • We constructed a quasi-distributed fiber-optic sensor network for the safety monitoring in power systems. It is possible to construct many of FBG sensors in a line and to be immune from electromagnetic noise. For demodulation analysis of reflected wavelength from FBG sensor, we proposed a simple and fast system using a InGaAs photo-diode array and a holographic diffraction grating. For accuracy improvement of the proposed demodulation system, we applied a Gaussian line-fitting algorithm. We obtained about 4[pm] of wavelength resolution and stability.

Fabrication of Regenerated Fiber Bragg Grating Using Thermal Annealing (열처리 공정을 이용한 regenerated FBG의 제작)

  • Seo, Ji-Hee;Lee, Nam-Kwon;Lee, Seung-Hwan;Kim, Yu-Mi;Yu, Yun-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.124-129
    • /
    • 2013
  • In this paper, we manufactured the regenerated FBG by the thermal annealing of seed FBG based on UV irradiation. The writing conditions of regenerated FBGs were investigated in four types of optical fiber. FBGs written in $H_2$-free fiber were erased and not regenerated during the thermal annealing. FBG written in $H_2$ loaded Boron co-doped fiber was erased at the temperature of about $580^{\circ}C$ and regenerated about $590^{\circ}C$. However, the extinction of regenerated FBG started at the temperature over $900^{\circ}C$ and then FBG disappeared out. FBG written in $H_2$ loaded Ge high doped fiber was erased and regenerated around the temperature of $800^{\circ}C$ and maintained until the end of the thermal annealing. The reflection of the regenerated FBG was decreased about 12 dB and the center wavelength of the regenerated FBG was shifted about 0.7 nm compared with that of the seed FBG. The thermal characteristics of the regenerated FBG were analyzed by reheating from room temperature to $980^{\circ}C$. As results, the regenerated FBG had survived without a decrease of reflection and the thermal sensitivity was $15pm^{\circ}C$.

Measuring Deformation of Cable in the Tensegrity Structure by Optical FBG Sensor (FBG센서를 이용한 텐서그리티 구조의 변형 계측)

  • Lee, Seung-Jae;Lee, Chang-Woo;Ju, Gi-Su
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.189-194
    • /
    • 2008
  • The main object of this paper is that it's possible to monitoring the deformation of cable in the tensegrity structure. always monitoring system of Fiber Bragg Grating(FBG)Sensor is described. The measurement of parts on the cable is very important. We make an experiment with measuring deformation of cable in the tensegrity structure to the pressure conditions. In the result of experiment, the fiber sensors showed good response to the pressure conditions. Therefore, We could calculate the deformation of cable structure and be possible health monitoring of the tensegrity structure.

  • PDF

Performance evaluation of smart prefabricated concrete elements

  • Zonta, Daniele;Pozzi, Matteo;Bursi, Oreste S.
    • Smart Structures and Systems
    • /
    • v.3 no.4
    • /
    • pp.475-494
    • /
    • 2007
  • This paper deals with the development of an innovative distributed construction system based on smart prefabricated concrete elements for the real-time condition assessment of civil infrastructure. So far, two reduced-scale prototypes have been produced, each consisting of a $0.2{\times}0.3{\times}5.6$ m RC beam specifically designed for permanent instrumentation with 8 long-gauge Fiber Optic Sensors (FOS) at the lower edge. The sensing system is Fiber Bragg Grating (FBG)-based and can measure finite displacements both static and dynamic with a sample frequency of 625 Hz per channel. The performance of the system underwent validation in the laboratory. The scope of the experiment was to correlate changes in the dynamic response of the beams with different damage scenarios, using a direct modal strain approach. Each specimen was dynamically characterized in the undamaged state and in various damage conditions, simulating different cracking levels and recurrent deterioration scenarios, including cover spalling and corrosion of the reinforcement. The location and the extent of damage are evaluated by calculating damage indices which take account of changes in frequency and in strain-mode-shapes. The outcomes of the experiment demonstrate how the damage distribution detected by the system is fully compatible with the damage extent appraised by inspection.

Behavior of Strut in Concrete-filled FRP PSC Bridge using FBG Sensors (FBG센서를 이용한 콘크리트 충진 FRP 스트럿 보강 PSC 교량의 스트럿 거동 분석)

  • Chung, Won-Seok;Kang, Dong-Hoon;An, Zu-Og
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.6
    • /
    • pp.11-15
    • /
    • 2009
  • Recently, a new PSC (Prestressed Concrete) bridge system, which is supported by Concrete-filled fiber-reinforced polymer (CFFRP) strut, has been introduced. This bridge is able to reduce self-weight and increase the width of traditional PSC bridges. However, no relevant research has been reported on local behavior of CFFRP strut in the bridge system. The purpose of this study is to investigate local behavior of CFFRP struts using fiber Bragg grating (FBG) sensors. Field tests were performed to examine the hoop strains and longitudinal strains of the FRP strut under various lateral positions and velocities of a test truck. It has been observed that CFFRP strut is under compression regardless of vehicle speed and location. However, the CFFRP strut is sensitive to the lateral position of vehicles in terms of strain magnitude. Results also indicated that the FBG sensors can faithfully record the hoop and longitudinal strains of the FRP strut without electro-magnetic interference.

A Numerical Study on the Strain Based Monitoring Method for Lateral Structural Response of Buildings using FBG Sensors (FBG를 이용한 변형률 기반 건물의 횡방향 구조반응 모니터링 기법에 관한 해석적 연구)

  • Choi, Se Woon;Park, Keunhyoung;Kim, Yousok;Park, Hyo Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.263-269
    • /
    • 2013
  • In this study, the strain based monitoring method to evaluate the lateral structural response of buildings is presented and an applicability of the proposed method is confirmed through the numerical study. It is assumed that the fiber Bragg grating(FBG) strain sensor is employed to measure the strain response of members due to the excellent properties such as multiplexing, and higher sampling frequency. These properties of FBG sensors is proper for buildings the a lot of sensors are required to monitor the reponses of those. FBG sensors measure the strain response of vertical members and are employed to calculate the curvatures of members using the measured strain responses. Then the lateral displacement, and lateral acceleration is evaluated based on the curvatures of vertical members. Additionally, these dynamic responses of buildings are used to evaluate the dynamic properties of buildings such as the natural frequencies and mode shapes using the frequency domain decomposition(FDD) method. Through the application of nine-story steel moment frame example structure, it is confirmed that the proposed method is appropriate to evaluate the lateral structural responses and dynamic properties of buildings.

Low Speed Weigh-In Motion System Using Multi-FBG Sensors (다중 광섬유 브라그 격자 센서를 적용한 저속용 자동계중 시스템)

  • Lee Hojoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.1
    • /
    • pp.21-28
    • /
    • 2004
  • We have demonstrated a low speed weigh-in motion system using FBG sensors and performed field test at a trial road. Technique, called identical chirped grating interrogation, have used for a demodulation relying on the mismatching of two identical broadband chirped gratings. We compensated the fluctuation of LED power and the temperature of sensor and used a lock-in amplifier to reduce effect of noise. We could design a bending plate that the measurement results are independent of position of weight. The FBG sensors weigh-in motion system showed linearity and reproducibility.