• Title/Summary/Keyword: Fiber Bragg Grating Sensor(FBG sensor)

Search Result 205, Processing Time 0.025 seconds

Torque Measurement of Rotating Shaft Using Fiber Bragg Grating Sensors and Rotary Optical Coupler (광섬유격자센서와 회전광학커플러를 사용한 새로운 회전축의 토크 측정방법)

  • Lee, Jong-Min;Hwang, Yo-Ha
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1195-1200
    • /
    • 2007
  • Torque of a rotating shaft has been mostly measured by strain gages combined with either a slip ring or telemetry. However, these methods have severe inherent problems like low S/N ratio, high cost, limited number of channels and difficult installation. In this paper, a new method using FBG(fiber bragg grating) sensors and a rotary optical coupler for online non-contact torque monitoring is suggested. FBG sensor can measure both strain and temperature, and has much batter characteristics than those of a strain gage. A rotary optical coupler is a optical connecting device between a rotating shaft and stationary side without any physical contact. It has been devised for transmitting light between a rotating optical fiber and a stationary optical fiber. The proposed method uses this rotary optical coupler to connect FBG sensors on the rotating shaft to instruments at stationary side. And a reference FBG sensor is also applied to compensate the insertion loss change of the rotary optical coupler due to rotation. Three FBG sensors have been fabricated in a single optical fiber. Two FBG sensors are attached on the shaft surface to measure torque and one sensor is installed at the shaft center to compensate the insertion loss change. The torque of a rotating shaft has been successfully measured by the suggested method proving its superior performance potential.

Vibration Control of a Composite Plate with Attached FBG Sensor (FBG 센서를 부착한 복합재 평판의 진동 제어)

  • Kim, Do-Hyung;Chang, Young-Hwan;Han, Jae-Hung;Lee, In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.14-17
    • /
    • 2003
  • Vibration control of a composite plate with a surface-bonded fiber Bragg grating (FBG) sensor and piezoceramic actuators has been performed using a neural network based adaptive predictive control algorithm. For the detection of Bragg wavelength changes, two cavity lengths in Fabry-Perot read-out interferometers are used in order to produce two quadrature phase shifted signals. The FBG sensor system and real-time neuro-adaptive control algorithm could be applicable to diverse dynamic systems.

  • PDF

Feasibility Study of Embedded FBG Sensors for the Smart Monitoring of High Pressure Composite Vessel (복합재 고압용기의 스마트 모니터링을 위한 FBG 센서의 삽입 적용성에 관한 연구)

  • Park, Sang-Wuk;Park, Sang-Oh;Kim, Chun-Gon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.33-36
    • /
    • 2005
  • In this research, for the smart health monitoring of the hydrogen storage high pressure composite vessel, the feasibility study of an embedded fiber Bragg grating(FBG) sensor is carried out. To verify strain measurement in various temperature environment which is needed for the hydrogen pressure vessel, tensile test of a composite specimen with both an embedded FBG sensor and a strain gauge is made in low temperature. Before we try a real-size hydrogen storage pressure vessel, a small & cheap composite pressure vessel having the same structure is fabricated with embedded FBG sensors and tested. In the case of an aluminum liner inside the vessel, survivability of FBG sensors at the interface is lower than the other areas.

  • PDF

Temperature-difference Flow Sensor Using Multiple Fiber Bragg Gratings

  • Kim, Kyunghwa;Eom, Jonghyun;Sohn, Kyungrak;Shim, Joonhwan
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.297-303
    • /
    • 2022
  • Multiple fiber Bragg gratings (FBGs) have been proposed and demonstrated for gas-flow measurements in a flow channel, using the temperature-difference method. This sensor consists of two FBG temperature sensors and two coil heaters. Coil heaters are used to heat the FBGs. The flow rate of the gas can be obtained by monitoring the difference in the Bragg-wavelength shifts of the two FBGs, which has features that exclude the effect of temperature fluctuations. In this study, experiments are conducted to measure the wavelength shift based on the flow rate, and to evaluate the gas-flow rate in a gas tube. Experimental results show that the sensor has a linear characteristic over a flow-rate range from 0 to 25 ℓ/min. The measured sensitivity of the sensor is 3.2 pm/(ℓ/min) at a coil current of 120 mA.

Development of a Convergence Monitoring Method for Cylindrical Structures by Optical Fiber Bragg Grating Sensor (광섬유 FBG센서를 이용한 원주형 구조물의 2차원 상대변위 모니터링기법 개발)

  • Lho, Byeong-Cheol;Kim , Jong-Woo;Kang , Suck-Hwa
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.160-166
    • /
    • 2006
  • Optical Fiber Bragg Grating sensor has a good performance to measure microscopic displacement which can measure strain of lining concrete and cylindrical structure like high intensity containment building and it can present many advantages like a corrosion resistance from the durability point of view. Then it can measure plane geometrical displacement of cylindrical structures with two-way displacement FBG sensor module. According to the test result, measurement of FBG sensor is better performance than other electric sensor system and 2D-level measurement. As a test result, Resolution of the two-way displacement sensor module with FBG sensors are more 10 times than other LVDT or 2D surveying.

Fiber optic sensor technology for sensing/controlling vibration and deformation of lightweight structures (경량 구조물의 진통 및 변형 감지/제어를 위한 광섬유 센서 기술)

  • Han, Jae-Hung;Kang, Lae-Hyong;Mueller, Uwe C.;Rapp, Stephan;Baier, Horst
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.157-163
    • /
    • 2006
  • Vibration and deformation sensing control of lightweight structures using optical fiber sensor technology is introduced in this presentation. This paper shows several examples of vibration control and deformation estimation for structures using these optical fiber sensor systems. Among various optical fiber sensors, in this paper, two types of optical fiber sensors, Fabry-Perot Interferometer(EFPI) and Fiber Bragg Grating(FBG) sensors, are mainly dealt with. Fiber optic sensors show many advantages over conventional strain gages for the measurement of vibration and deformation of lightweight structures.

  • PDF

The Measurement of Concrete Deformations at Early Age using Fiber-Optic Bragg Grating Sensors (광섬유 GRATING SENSOR를 이용한 초기재령 콘크리트의 변형 측정)

  • 김지상;이상배;김남식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1238-1241
    • /
    • 2000
  • The deformations of concrete specimens were measured at early at early ages, in order to verify the applicability of FBG(Fiber Bragg Grating) sensors. The FBG sensors were directly buried at various locations in the beam-type RC specimens at the time of fabrication. In this experiment, the changes of strains in concrete at early age were successfully measured as the movement in wavelength of light signals. The FBG sensors may be a very effective tool to investigate the mechanical/thermal behavior inside of concrete structures.

  • PDF

Monitoring of Temperature and Strain Variation with FBG Sensors (FBG 센서를 활용한 온도와 스트레인 변화 모니터링)

  • Ko, Ki-Han;Park, Young;Cho, Yong-Hyeon;Jung, Ho-Sung;Cho, Yong-Suk;Choi, Won-Seok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.3
    • /
    • pp.218-221
    • /
    • 2009
  • This paper reports on measurement method for the fiber optic strain monitoring of overhead contact line systems of trains, We used FBG (Fiber Bragg Grating) sensors to measure the strain variation of overhead contact line. FBG sensors can sensitively measure the variation of strain and! or temperature by the shift wavelength of reflected wave according to the lattice variation during the measurement. FBG sensor were attached on the contact line and connected to the monitoring system with optical fibers. The monitering system with FBG sensors showed very good sensitivity to measuring strain variation and this system could be applied to the overhead contact line of KTX (Korea Train eXpress).

Signal Processing System of Multi-Fiber Bragg Grating Strain Sensor using Wavelength Scanning-Locking of a Fabry-Perot (Fabry-Perot 필터의 파장 스캐닝-로킹을 이용한 다중 Fiber Bragg Grating Strain 센서의 신호처리 시스템)

  • 이성은;한대우;이호준;김기수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.8B
    • /
    • pp.1472-1479
    • /
    • 1999
  • In this paper, e proposed and implemented multi-FBG strain sensor system which used both wavelength scanning and locking of Fabry Perot filter for improve the performance of sensor system. The resolution of the sensor system is 3 and 10 $\mu$strain for the single and multi sensor system respectively.

  • PDF

Composite Fracture Detection Capabilities of FBG Sensor and AE Sensor

  • Kim, Cheol-Hwan;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.152-157
    • /
    • 2014
  • Non-destructive testing methods of composite materials are very important for improving material reliability and safety. AE measurement is based on the detection of microscopic surface movements from stress waves in a material during the fracture process. The examination of AE is a useful tool for the sensitive detection and location of active damage in polymer and composite materials. FBG (Fiber Bragg Grating) sensors have attracted much interest owing to the important advantages of optical fiber sensing. Compared to conventional electronic sensors, fiber-optical sensors are known for their high resolution and high accuracy. Furthermore, they offer important advantages such as immunity to electromagnetic interference, and electrically passive operation. In this paper, the crack detection capability of AE (Acoustic Emission) measurement was compared with that of an FBG sensor under tensile testing and buckling test of composite materials. The AE signals of the PVDF sensor were measured and an AE signal analyzer, which had a low pass filter and a resonance filter, was designed and fabricated. Also, the wavelength variation of the FBG sensor was measured and its strain was calculated. Calculated strains were compared with those determined by finite element analysis.