• Title/Summary/Keyword: Fiber

Search Result 22,037, Processing Time 0.04 seconds

Effect of Pull-out Property by Shape and Mechanical Property of Reinforcing Fiber on the Flexural Behavior of Concrete (보강섬유의 형상과 물성에 따른 인발특성이 콘크리트의 휨거동에 미치는 영향)

  • Kim, Hong-Seop;Nam, Jeong-Soo;Kim, Jung-Hyun;Han, Sang-Hyu;Kim, Gyu-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.41-50
    • /
    • 2014
  • This study evaluated the bonding property of fiber and flexural behavior of fiber reinforced concrete. Amorphous steel fiber, hooked steel fiber and polyamide fiber was used for evaluation of bonding property and flexural behavior. As a result, the hooked steel fiber was pulled out from matrix when peak stress. However amorphous steel fiber occurred shear failure because bonding strength between fiber and matrix was higher than tensile strength of fiber. Polyamide fibers occurred significantly displacement to peak stress because of elongation of fiber. After that peak stress, fiber was cut off. Amorphous steel fiber reinforced concrete had a greater maximum flexural load compared with hooked steel fiber reinforced concrete because bonding performance between fiber and matrix was high and mixed population of fiber was many. However flexural stress was rapidly reduced in load-deflection curve because of shear failure of fiber. Flexural stress of hooked steel fiber reinforced concrete was slowly reduced because fiber was pulled out from the matrix. In the case of polyamide fiber reinforced concrete, flexural stress was rapidly lowered because of elongation of fiber. However flexural stress was increased again because of bonding property between polyamide fiber and matrix. The pull-out properties of the fiber and matrix has effect on the deformation capacity and flexural strength of fiber reinforced concrete.

Engineering Properties of Carbon Fiber and Glass Fiber Reinforced Recycled Polymer Concrete (탄소섬유 및 유리섬유로 보강한 재생 폴리머 콘크리트의 공학적 특성)

  • Noh, Jin Yong;Sung, Chan Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.3
    • /
    • pp.21-27
    • /
    • 2016
  • This study was performed to evaluate engineering properties of carbon and glass fiber reinforced recycled polymer concrete. Fiber reinforced recycled polymer concrete were used recycled aggregate as coarse aggregate, natural aggregate as fine aggregate, $CaCO_3$ as filler, unsaturated polyester resin as binder, and carbon and glass fiber as fibers. The compressive and flexural strength of carbon fiber reinforced recycled polymer concrete were in the range of 68~81.5 MPa and 19.1~21.5 MPa at the curing 7days. Also, the compressive and flexural strength of glass fiber reinforced recycled polymer concrete were in the range of 69.4~85.1 MPa and 19~20.1 MPa at the curing 7days. Abrasion ratio of carbon and glass fiber reinforced recycled polymer concrete were decreased 21.6 % and 11.6 % by fiber content 0.9 %, respectively. After impact resistance test, drop numbers of initial and final fracture were increased with increase of fiber contents. Accordingly, carbon fiber and glass fiber reinforced recycled polymer concrete will greatly improve the hydraulic structures, underground utilities and agricultural structures.

Mechanical Characteristics of Reinforced Soil(II) -Fiber Reinforced Soil- (보강 혼합토의 역학적 특성(II) -섬유 혼합토-)

  • Song, Chang Seob;Lim, Seong Yoon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.6
    • /
    • pp.37-42
    • /
    • 2002
  • This study has been performed to investigate the physical and mechanical characteristics of compaction, volume change and compressive strength for reinforced soil mixed with polypropylene fiber, and to confirm the reinforcing effects with admixture such as polypropylene fiber. To this end, a series of compaction test and compression test was conducted for clayey soil(CL) and polypropylene fiber reinforced soil. In order to determine proper moisture contents and mixing ratio, pilot test was carried out for natural soil and PFRS(polypropylene fiber reinforced soil). And the mixing ratio of mono-filament fiber and fibrillated polypropylene fiber admixture was 0.1%, 0.3%, 0.5% and 1.0% by the weight of dry soil. From the experimental results, it was found that the optimum moisture contents(OMC) increased with the mixing ratio of fiber, but the maximum dry unit weight and the volume change was decreased with the mixing ratio. It means that the improvement of the workability and the reduction of the weight of embankment was done by the addition of the polypropylene fiber. And, from the compression test results, it was found that the addition of the polypropylene fiber remarkably improved the compressive strength of PFRS. And it was observed in the viewpoint of strength that the fibrillated polypropylene fiber reinforced soil was more effective than the mono-filament polypropylene fiber reinforced soil.

Effects of Wheat Fiber, Oat Fiber, and Inulin on Sensory and Physico-chemical Properties of Chinese-style Sausages

  • Huang, S.C.;Tsai, Y.F.;Chen, C.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.6
    • /
    • pp.875-880
    • /
    • 2011
  • This study introduces the addition of wheat fiber, oat fiber, and inulin to Chinese-style sausages, in amounts of 3.5% and 7%, respectively. Researchers used analysis of general composition and texture properties, and sensory evaluation to assess the influence of these three types of dietary fiber on the quality and palatability of Chinese-style sausages. Results showed that the type and amount of dietary fiber introduced did not significantly influence the general composition, color, and total plate count of sausages. However, the addition of wheat fiber and oat fiber significantly hardened the texture of Chinese-style sausages (p<0.05). A greater amount of dietary fiber added implied a harder texture. Added inulin did not influence the texture of Chinese-style sausages (p>0.05). Results of product assessment showed that, aside from sausages with 7% wheat fiber scoring less than 6 points (on a 9-point scale) in terms of overall acceptability, the other groups of Chinese-style sausages scored over 6 points. Judges preferred the sausage groups with 3.5% added oat and wheat fiber. This study demonstrates that adding fiber to Chinese-style sausages to increase the amount of dietary fiber is feasible.

Study on the durability of fiber reinforced plastic by moisture aborsoption (흡수에 의한 FRP의 내구성에 관한 연구)

  • 문창권;구자삼
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.48-56
    • /
    • 1997
  • This work has been investigated in order to study the influence of the moisture absorption on the mechanical pf the glass fiber/epoxy resein composites and the carbon fiber/epoxy resein composites. The types of glass fiber used in the glass fiber/epoxy resein composites were randomly oriented fiber and plain fabric fiber. And carbon fiber.epoxy resein composites was laminated with fabric prepreg which was formed with carbon fiber and epoxy resein. Both composites were immersed up to 100 days in distilled water at $80^{\circ}C$, and then dried up to 3 days in an oven at 80$80^{\circ}C$. Both composites were measured for the weight gain of water(wt.%) and tensile strength through immersion and dry time. Consequently, it was found that the tensile strength of thw glass fiber/epoxy resein composites and the carbon fiber/epoxy resein composites were reduced proportionally to the moisture absortion rate. Also, the tensile strength of glass fiber composites was decreased more than that of the carbon fiber composites. Additionally, it was found that the tensile strength of all composites which decreased by moisture absorption were partly recovered by drying in an oven at 80$80^{\circ}C$.

  • PDF

COMPUTATIONAL ANALYSIS ON THE COOLING PERFORMANCE OF GLASS FIBER COOLING UNIT WITH HELIUM GAS INJECTION (헬륨가스 주입식 유리섬유 냉각장치의 냉각성능 해석)

  • Oh, I.S.;Kim, D.;Umarov, A.;Kwak, H.S.;Kim, K.
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.110-115
    • /
    • 2011
  • A modern optical fiber manufacturing process requires the sufficient cooling of glass fibers freshly drawn from the heated and softened silica preform in the furnace, since the inadequately cooled glass fibers are known to cause improper polymer resin coating on the fiber surface and to adversely affect the product quality of optical fibers. In order to greatly enhance the fiber cooling effectiveness at increasingly high fiber drawing speed, it is necessary to use a dedicated glass fiber cooling unit with helium gas injection between glass fiber drawing and coating processes. The present numerical study features a series of three-dimensional flow and heat transfer computations on the cooling gas and the fast moving glass fiber to analyze the cooling performance of glass fiber cooling unit, in which the helium is supplied through the discretely located rectangular injection holes. The air entrainment into the cooling unit at the fiber inlet is also included in the computational model and it is found to be critical in determining the helium purity in the cooling gas and the cooling effectiveness on glass fiber. The effects of fiber drawing speed and helium injection rate on the helium purity decrease by air entrainment and the glass fiber cooling are also investigated and discussed.

Specialty Fiber Coupler: Fabrications and Applications

  • Lee, Byeong-Ha;Eom, Joo-Beom;Park, Kwan-Seob;Park, Seong-Jun;Ju, Myeong-Jin
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.326-332
    • /
    • 2010
  • We review the research on specialty fiber couplers with emphasis placed on the characteristics that make them attractive for biomedical imaging, optical communications, and sensing applications. The fabrication of fiber couplers has been carried out with, in addition to conventional single mode fiber, various specialty fibers such as photonic crystal fiber, double clad fiber, and hole-assisted fiber with a Ge-doped core. For the fiber coupler fabrication, the side polishing and the fused biconical tapered methods have been developed. These specialty fiber couplers have been applied to optical coherence tomography, fluorescence spectroscopy, fiber sensors, and optical communication systems. This review aims to provide a detailed statement on the recent progress and novel applications of specialty fiber couplers.

Comparison of Push-out Bond Strengths According to Relining Procedure and Cement Type on Fiber Post (Fiber post의 Relining 방법과 시멘트 유형에 따른 Push-out Bond Strength의 비교)

  • Kang, Hyun-Young;Cho, So-Yeun;Yu, Mi-Kyung;Lee, Kwang-Won;Kim, Kyoung-A
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.3
    • /
    • pp.253-265
    • /
    • 2011
  • When restoring endodontically treated teeth is the mismatch between fiber post size and post space diameter, the resin cement layer is excessively thick in post space and voids are likely to form in it, thus predisposing to de-bonding. The method to overcome this problem is to reline the fiber post with composite resin. This individual anatomic post improves the adaptation of post to root walls and decreases the resin cement thickness. The purpose of this in vivo study was to evaluate the push-out bond strength of fiber post according to relining procedure and luting agents type used for simplicity of clinical procedure. Forty-two extracted teeth were divides into six groups.(n=7) A1: relined fiber post cemented with Luxacore/all-bons 2, A2: non-relined fiber post cemented with Luxacore/all-bond2, B1: relinind fiber post cemented with Calibra/XP-bond, B2: non-relined fiber post cemented with Calibra/XP-bond, C1: relined fiber post cemented with RelyX Unicem, C2: non-relined fiber post cemented with RelyX Unicem Push-out bond strength was affected by interaction between relining procedure and luting agent type. Relined fiber post presented higher push-out bond strength value than non-relined fiber post and statically significant differences(p<0.05) Cementation with RelyX Unicem showed significantly higher bond strength than other luting agents(p<0.05).

Effects of Specialty Cellulose Fibers on Improvement of Flexural Performance and Control of Cracking of Concrete (콘크리트의 휨성능 증진 및 균열제어에 대한 특수 가공된 셀룰로오스섬유의 효과)

  • 원종필;박찬기
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.89-98
    • /
    • 2000
  • The mechanical properties of specialty cellulose fiber reinforced concrete and the contribution of specialty cellulose fiber to drying shrinkage crack reduction potential of concrete and theirs evaluation are presented in this paper. The effects of differing fiber volume fraction(0.03%, 0.06%, 0.08%, 0.1%, 0.15%, 0.2%) were studied. The results of tests of the specialty cellulose fiber reinforced concrete were compared with plain and polypropylene fiber reinforced concrete. Flexural performance(flexural strength and flexural toughness) test results indicated that specialty cellulose fiber reinforcement showed an ability to increase the flexural performance of normal- and high- strength concrete(as compared to plain and polypropylene fiber reinforced concrete). Optimum specialty cellulose fiber reinforced concrete were obtianed using 0.08% fiber volume fraction. Drying shrinkage cracking test results confirmed specialty cellulose fibers are effective in reducing the drying shrinkage cracking of normal and high-strength concrete(as compared to popylene fiber reinforced concrete).

A Study on the Dynamic Properties of Cement Mortar with Recycled PET Fiber (폐PET섬유를 혼입한 시멘트모르터의 역학적 특성에 관한 연구)

  • 김영근;김상철;김명훈
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.77-86
    • /
    • 2002
  • In this study we intended to investigate properties of cement mortar with recycled PET fiber, PE fiber, and PP fiber such as slump flow, compressive strength, tensile strength, and flexural strength. As results of experiment, several properties of specimen with recycled PET fiber were little low comparing those of specimen with PE fiber and PP fiber. But if we see from point of economy and recycle of industrial wastes, it has enough reason to be used. Compressive strength of specimen with recycled PET fiber at 56 days was about 10% higher, but tensile strength and flexural strength were lower than that of no-fiber.

  • PDF