• Title/Summary/Keyword: Fertilization Recommendation

Search Result 30, Processing Time 0.023 seconds

A Study on Carbon Footprint and Mitigation for Low Carbon Apple Production using Life Cycle Assessment (전과정평가법을 이용한 사과의 탄소발생량 산정과 저감 연구)

  • Lee, Deog Bae;Jung, Sun Chul;So, Kyu Ho;Kim, Gun Yeob;Jeong, Hyun Cheol
    • Journal of Climate Change Research
    • /
    • v.5 no.3
    • /
    • pp.189-197
    • /
    • 2014
  • Carbon footprint of apple was a sum of $CO_2$ emission in the step of manufacturing waste of agri-materials, and greenhouse gas emission during apple cultivation. Input amount of agri-materials was calculated on 2007 Income reference of Apple by Rural Development Administration. Emission factor of each agri- materials was based on domestic data and Ecoinvent data. $N_2O$ emission factor was based on 1996 IPCC guideline. Carbon dioxide was emitted 0.64 kg $CO_2$ to produce 1 kg apple fruit, and carbon dioxide was emitted 43.6% in the step of the manufacturing byproduct fertilizer, 1.3% in the step of the manufacturing single fertilizer, 4.7% in the step of the manufacturing composite fertilizer, 6.3% in the step of the manufacturing agri-chemicals, 14.6% in the step of the manufacturing fuel, 11.5% in the step of the fuel combustion, 17.7% of $N_2O$ emission by nitrogen application and 0.18% of disposal of agri-materials. It is needed for farmers to use fertilization recommendation based on soil testing (soil. rda.go.kr) because scientific fertilization is a major tools to reduce carbon dioxide of apple production. The fertilization recommendation could be also basic data in Measurable-ReporTablele-Verifiable (MRV) system for carbon footprint.

Fertilizer Use Efficiency of Taro (Colocasia esculenta Schott) and Nutrient Composition of Taro Tuber by NPK Fertilization

  • Lee, Ye-Jin;Sung, Jwa-Kyung;Lee, Seul-Bi;Lim, Jung-Eun;Song, Yo-Sung;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.388-392
    • /
    • 2016
  • The objectives of fertilizer recommendation are to prevent the application of excessive fertilization and to produce target yields. Also, optimal fertilization is important because crop quality can be influenced by fertilization. In this study, yields and fertilizer use efficiency of Taro (Colocasia esculenta Schott) were evaluated in different level of NPK fertilization. N, P and K fertilizer application rates were 5 levels (0, 50, 100, 150, 200%) by practical fertilization ($N-P_2O_5-K_2O=180-100-150kg\;ha^{-1}$), respectively. In the N treatment, the yields of Taro tuber were about $33Mg\;ha^{-1}$ from 90 to $360kg\;ha^{-1}$ N fertilization. However, the ratio of tuber to total biomass decreased with increasing N fertilization rate. In the P and K treatments, yields of Taro tuber were the highest at $150kg\;ha^{-1}$ fertilization. Fertilizer use efficiency was decreased by increase of N and K fertilization. Crude protein of Taro tuber was the highest at practical fertilization. Sucrose content of tuber was influenced by phosphate application.

Optimum Level of Nitrogen Fertilizer Based on Content of Nitrate Nitrogen for Growing Chinese Cabbage in Green House (시설조건(施設條件)의 배추 재배(栽培) 토양(土壤)에서 질산태질소(窒酸態窒素) 검정(檢定)에 의한 질소실비량(窒素施肥量) 결정(決定))

  • Park, Hyo-Taek;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.384-392
    • /
    • 2000
  • To establish N fertilizer recommended scheme for the Chinese cabbage cultivation in green house based on the soil test of nitrate nitrogen, relationship among the content of soil nitrate and fertilizer effects and fertilizer N use efficiency were investigated from nine soils which differed amount of nitrate nitrogen from $14mg\;kg^{-1}$ to$226mg\;kg^{-1}$. The amount of nitrate nitrogen in soil showed a positive correlation with the dry weight of chinese cabbage in the plot of no fertilization. When the fertilizer effects were calculated by difference between the plots of fertilization and no fertilization in the dry weight and the amount of N uptake, a negative correlation was obtained between the amount of nitrate nitrogen in soils and the fertilizer effects. There was also a negative correlation between the amount of nitrate nitrogen in soils and fertilizer use efficiency. Recommendation of application rate of nitrogen fertilizer based on content of $NO_3-N$ in soils was evaluated by the regression equation among the content of soil nitrate, fertilizer effects and fertilizer N use efficiency. Incase the content of $NO_3-N$ nitrogen in soil is more than $200mg\;kg^{-1}$, No N fertilization is recommended; However, The standard N fertilization($320kg\;ha^{-1}$) is recommended for the soils with less than $50mg\;kg^{-1}$. For the soils ranged from $50mg\;kg^{-1}$ to $200mg\;kg^{-1}$ in the amount of nitrate nitrogen, an equation has been developed in order to calculate the recommended amount of fertilizer N.

  • PDF

Recommendation of Optimum Amount of Fertilizer Nitrogen Based on Soil Organic Matter for Chinese Cabbage and Cabbage in Volcanic Ash Soils of Cheju Island (제주도 화산회토양의 배추와 양배추에 대한 질소의 시비추천식 설정)

  • Song, Yo-Sung;Kwak, Han-Kang;Yeon, Byeong-Yeal;Lee, Choon-Soo;Yoon, Jung-Hui;Moon, Doo-Young;Lee, Shin-Chan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.2
    • /
    • pp.105-111
    • /
    • 2002
  • To find out the optimum nitrogen fertilization levels for the leafy vegetables in volcanic ash soils of Cheju island, fertilization effects on chinese cabbage chinese and cabbage were investigated through pot and field experiments. In pot experiment conducted with two volcanic ash soils of Cheju island, optimum rates of nitrogen fertilizer was ranged from 294 to $331kg\;ha^{-1}$ for chinese cabbage. At field experiment with one volcanic soil, the optimum N fertilizer was $331kg\;ha^{-1}$. On the basis of soil organic matters, fertilizer recommendation formula for cabbage, could be established by using 1.03 of comparison factors (F) compared with chinese cabbage : y=344.54-0.285x for chines cabbage, y= 354.88-0.294x for cabbage, where y is the recommendation amount of nitrogen fertilizer with x g $kg^{-1}$ of organic matter in soil. Actual optimum rate of nitrogen fertilizer for chinese cabbage under field condition was much more similar to the value caluculated by the revised nitrogen recommendation formula than the amount of nitrogen fertilizer recommended by the current formula in volcanic ash soil.

Recommendation of Nitrogen Fertilization for Cucumber from Relationship between Soil Nitrate Nitrogen and Yield (토양의 질산태 질소와 수량과의 관계를 통한 오이의 질소 시비량 설정)

  • Lim, Tae-Jun;Hong, Soon-Dal;Kim, Seung-Heui;Park, Jin-Myeon
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.3
    • /
    • pp.223-227
    • /
    • 2007
  • This study was carried out to establish the reasonable level of nitrogen (N) fertilization based on soil nitrate nitrogen $(NO_3-N)$ content for cucumber (Cucumis sativus L.) under plastic film house. Cucumber plants were cultivated with standard and free N fertilization in eight soils which had various amount of $NO_3-N$ ranging from 67 to 343 mg/kg. The yield of cucumber was in the range of 1006 to 2369 g/plant depending on the nitrogen supplying capability of soils. The amount of $NO_3-N$ in the soil was negatively correlated with agronomic efficiency (AE) and N use efficiency (NUE). The critical level of soil $NO_3-N$ content for cucumber in N free fertilization was found to be about 260 mg/kg in Cate-Nelson analysis of variance between soil $NO_3-N$ and AE or NUE. Also the same critical soil $NO_3-N$ content was found in the yield and amount of N uptake of cucumber under N free fertilization. A standard N fertilization was required when soil $NO_3-N$ content was below 70 mg/kg. The optimal application rate of N fertilizer for cucumber in the soils containing $NO_3-N$ between 260-70 mg/kg could be recommended by the equation Y=-1.032X+269.2 (Y: N fertilization rate, kg/ha; X : soil $NO_3-N$ content mg/kg).

Assessing Changes in Selected Soil Chemical Properties of Rice Paddy Fields in Gyeongbuk Province

  • Park, Sang-Jo;Park, Jun-Hong;Won, Jong-Gun;Seo, Dong-Hwan;Lee, Suk-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.3
    • /
    • pp.150-161
    • /
    • 2017
  • This study was conducted with the data of monitoring on soil chemical properties of rice paddy soils in Gyeongbuk Province. The selected soil chemical properties were analyzed every 4 year from 1999 to 2015. The soil pH measured in 2015 was higher than pH 6.0, which was 0.3-0.4 pH unit higher than data until 2007 survey year. The mean content of organic matter was greater than $24g\;kg^{-1}$ since 2003, but 35% of soil samples remained below the recommended level ($20-30g\;kg^{-1}$) in 2015. The mean concentration of available phosphate was maintained at $40mg\;kg^{-1}$ higher than the upper recommendation level ($80-120mg\;kg^{-1}$), and more than 40% of paddy soils tested were found to have less than the recommendation level during the survey period. The exchangeable K concentration ranged from 0.25 to $0.39cmol_c\;kg^{-1}$. Exchangeable Ca showed an average at the optimum range ($5.0-6.0cmol_c\;kg^{-1}$) during the monitoring period. Exchangeable Mg decreased linearly ($0.02cmol_c\;kg^{-1}\;year^{-1}$) from $1.55cmol_c\;kg^{-1}$ as of 1999 to below the lower level of the recommendation range ($1.5-2.0cmol_c\;kg^{-1}$). The amount of available $SiO_2$ was increased significantly from 2011 to over the recommendation level (${\geq}157mg\;kg^{-1}$). It was revealed that the soil chemical properties of rice paddy fields was influenced by topology, soil texture, type and region as result of principal component analysis or cluster analysis. Therefore, an assessment on chemical properties of rice paddy soils should be performed to consider various soil physical conditions and agronomic practices such as fertilization, cropping system, and so on. Because of the high variability of nutrient levels across Gyeongbuk Province, nutrient management based on soil fertility test is required by respective farm land unit.

Relation of Organic Matter Content and Nitrogen Mineralization of Soils Collected from Pepper Cultivated Land (고추 재배 밭에서 채취한 토양의 유기물 함량과 질소 무기화 량의 관계)

  • Lee, Yejin;Lee, Seulbi;Kim, Yangmin;Song, Yosung;Lee, Deogbae
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.3
    • /
    • pp.119-123
    • /
    • 2019
  • BACKGROUND: Estimation of soil nitrogen supply is essential to manage nitrogen fertilization in arable land. In Korea, nitrogen fertilization is recommended based on the soil organic matter content because it is difficult to assess nitrogen (N) mineralization of upland soils directly. In this study, the relationship between soil organic matter (SOM) content and N mineralization was investigated to explore the limitation of using SOM in predicting soil N mineralization. METHODS AND RESULTS: Soil samples from the 0 to 10 cm depth were collected from 18 individual pepper cultivated fields in Tae-an and Chung-yang provinces before fertilization. N mineralization in the soils was quantified using incubation for 70 days at $30^{\circ}C$. The mineralizable soil N (MSN) was positively correlated with SOM, and the relation equation between MSN and SOM was '$MSN(kg\;10a^{-1})=0.2933{\ast}SOM(g\;kg^{-1})+0.0897$ ($r^2=0.6224$, p<0.001)'. However, the differences of N mineralization among the soils with the similar concentrations of soil organic matter were about 3 to 4.6 times, suggesting that the other soil factors such as total N concentration or EC should affect N mineralization. CONCLUSION: We concluded that SOM alone could not reflect the capacity of soil to supply N that is used for recommendation of N fertilization rate. Therefore, other soil properties should be considered to improve N fertilization management in arable land for sustainable agriculture.

Field Variability and Variable Rate Fertilization of Nitrogen in a Direct Seeding Paddy for Precision Agriculture (정밀 농업을 위한 직파 벼 재배 논에서 포장 변이성 조사와 질소의 변량 시비)

  • Jung, Yeong-Sang;Lee, Ho Jin;Chung, Ji-Hoon;Park, Jeong-Geun;Kang, Chang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.4
    • /
    • pp.202-210
    • /
    • 2005
  • Since understanding on spatial variability of a field is essential to pursue precision agricultural technology, a field study for field variability and variable rate fertilization of nitrogen in a direct seeding paddy was attempted. Variable rate application of nitrogen was designed with soil test, and field application was tested in a direct seeding paddy in the Kimje, Jeonbuk, Korea. The grid samples of soil was collected from the field of which unit size was 35 m by 112 m on February before irrigating of the field. Soil organic matter, available phosphate and silicate, and extractable potassium were analyzed. Variable rate fertilizer recommendation maps of nitrogen for high yielding, HY, and low input sustainable agriculture, LISA, were derived based on the soil analysis. Direct seeding of rice was performed for variable rate treatment, VRT, for the experimental plot in 2001 and 2002, and so did for three volunteer farmers' field in 2003. Yield mapping was performed by harvesting. Economic feasibility of direct seeding of rice by variable rate fertilization was evaluated. Though increased yield of variable rate application and benefit of reducing fertilizer use and environmental impact, the cost for soil test exceeded the total reduced fertilizer cost.

Effect of Organic Materials Use Recommendation System on Soil N Mineralization and Rice Productivity in Organic Paddy (유기자원 사용처방 기준 적용에 따른 토양 질소 무기화 및 유기 벼 생산성)

  • Lee, Cho-Rong;Lee, Sang-min;Hwang, Hyeon-Yeong;Kwon, Hyeok-Gyu;Jung, Jung A;An, Nan-Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.2
    • /
    • pp.15-23
    • /
    • 2021
  • This study was conducted to evaluate the field application of the developed recommendation system in organic rice (Oriza sativa L.) paddy and to investigate the mineral nitrogen content in soil and rice productivity. According to the developed system, hairy vetch (HV), rye+rapeseed oil cake (R+OC), rapeseed oil cake (OC) for only basal fertilization (OC-B), OC for split application (OC-S), pig manure compost (PMC), and chemical fertilizer (CHM) were applied to paddy soil at the rate of 107~133 kg N/ha. Results were followed, unhulled rice yield of OC-S (111%), OC-B (110), R+OC (106), HV (101), and PMC (96) were no significantly different with CHM (100). Also there was positive correlation (R2=0.803*) between unhulled rice yield and cumulative inorganic N in soil. For nitrogen use efficiency of rice, OC-B, OC-S, and R+OC were not significantly different with CHM. In conclusions, the developed organic materials use recommendation system was effective for organic rice productivity. It could be useful for organic farmer to apply the organic materials use recommendation system for rice.

Recommendation of the Amount of Nitrogen Top Dressing based on Soil Nitrate Nitrogen Content for Leaf Perilla (Perilla frutescens) under the Plastic Film House (토양 질산태질소 함량에 따른 시설 잎들깨 질소 웃거름시비량 추천)

  • Kang, Seong-Soo;Lee, Ju-Young;Sung, Jwa-Kyung;Gong, Hyo-Young;Jung, Hyung-Jin;Park, Chang-Hwan;Yun, Yeo-Uk;Kim, Myung-Sook;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1112-1117
    • /
    • 2011
  • This study was conducted to recommend nitrogen (N) top dressing based on soil nitrate content for leaf perilla under forcing culture in Gumsan-gun and Milyang-si. Experimental design was the randomized complete block design for five N fertilization levels and conventional fertilization. Dry weight, nitrogen uptake, and the node number of leaf perilla were measured and soil nitrate contents were analyzed monthly. The amount of nitrogen uptake for growth of a node with two leaves was $2.2kg\;10a^{-1}$ for Gumsan site and $3.5kg\;10a^{-1}$ for Milyang site. Lower level of soil nitrate N concentration for standard N fertilization was determined as $10mg\;kg^{-1}$ for both sites. Soil depth, bulk density, utilization rate of soil nitrate N, and the amount of N uptake for growth of a node with two leaves were considered for calculation of upper level of soil nitrate N concentration. The upper levels of soil nitrate N concentration for no N fertilization were determined as $30mg\;kg^{-1}$ for Gumsan site and as $40mg\;kg^{-1}$ for Milyang site. Consequently the recommendation equations for the N top dressing were Y=-0.157X+4.71 for Gumsan site and Y=-0.1667X+6.6667 for Milyang site.