• Title/Summary/Keyword: Ferromagnetic transition temperature

Search Result 54, Processing Time 0.026 seconds

Ferromagnetic Heterostructures based on Semiconductors

  • Tanaka, M.;Sugahara, S.;Nazmul, A.M.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.262-262
    • /
    • 2003
  • Creating a new spin-based electronics (often called "spin-electronics" or "spintronics") is one of the hot topics in the current solid-state physics and electronics research. In order to utilize the spin degree of freedom in solids, particularly in semiconductors the current electronics is based on, we need to fabricate appropriate materials, understand and control the spin-dependent phenomena. In this ta1k, I will review the recent deve1opments of epitaxial ferromagnetic hetero structures based on semiconductors towards spintronics. This includes the semiconductor materials and hetero structures having high ferromagnetic transition temperature (III-V based alloy magnetic semiconductors, Mn-delta-doped magnetic semiconductors, and related heterostructures), spin-dependent transport and tunneling, and their device applications (tunneling magnetoresistance devices and three-terminal devices). Future issues and prospects will be also discussed.

  • PDF

Metal-Insulator Transition Induced by Short Range Magnetic Ordering in Mono-layered Manganite

  • Chi, E.O.;Kim, W.S.;Hong, C.S.;Hur, N.H.;Choi, Y.N.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.5
    • /
    • pp.573-578
    • /
    • 2003
  • The structural, magnetic, and transport properties of a mono-layered manganite $La_{0.7}Sr_{1.3}MnO_{4+{\delta}}$ were investigated using variable temperature neutron powder diffraction as well as magnetization and transport measurements. The compound adopts the tetragonal I4/mmm symmetry and exhibits no magnetic reflection in the temperature region of 10 K ≤ T ≤ 300 K. A weak ferromagnetic (FM) transition occurs about 130 K, which almost coincides with the onset of a metal-insulator (M-I) transition. Extra oxygen that occupies the interstitial site between the [(La,Sr)O] layers makes the spacing between the [MnO₂] layers shorten, which enhances the inter-layer coupling and eventually leads to the M-I transition. We also found negative magneto resistance (MR) below the M-I transition temperature, which can be understood on the basis of the percolative transport via FM metallic domains in the antiferromagnetic (AFM) insulating matrix.

Suppression of superconductivity in superconductor/ferromagnet multilayers

  • Hwang, T.J.;Kim, D.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.33-36
    • /
    • 2016
  • Suppression of the superconducting transition temperature ($T_c$) of NbN thin films in superconductor/ferromagnet multilayers has been investigated. Both superconducting NbN and ferromagnetic FeN layers were deposited on thermally oxidized Si substrate at room temperature by using reactive magnetron sputtering in an $Ar-N_2$ gas mixture. The thickness of FeN films was fixed at 20 nm, while the thickness of NbN films was varied from 3 nm to 90 nm. $T_c$ suppression was clearly observed in NbN layers up to 70 nm thickness when NbN layer was in proximity with FeN layer. For a given thickness of NbN layer, the magnitude of $T_c$ suppression was increased in the order of Si/FeN/NbN, Si/NbN/FeN, and Si/FeN/NbN/FeN structure. This result can be used to design a spin switch whose operation is based on the proximity effect between superconducting and ferromagnetic layers.

Magnetoresistance behavior of $La_{1-\chi}Sr_\chiCoO_{3-\delta}$ films around the metal-insulator transition

  • Park, J. S.;Park, H. G.;Kim, C. O.;Lee, Y. P.;V. G. Prokhorov
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.100-103
    • /
    • 2003
  • The magnetoresistance (MR) of $La_{1-\chi}S_{\chi}CoO_{3-\delta}$ films prepared by pulsed-laser deposition were investigated in order to clarify the magnetotransport properties around the metal-insulator transition. For the films in the metallic state ($\chi$ > 0.25), the MR(T) manifests a small peak at the Curie temperature due to the spin-disorder scattering. The transition of the film into the insulating state ($\chi\;\leq$ 0.25) is accompanied by an essential growth of the MR and results in a significant increase in the MR(T) with decreasing temperature, due to a phase separation into the ferromagnetic-metal clusters and the insulating matrix.

Low Temperature Thermoelectric Power Properties in La2.1Sr1.9Mn3O10 System (저온에서의 La2.1Sr1.9Mn3O10 세라믹스의 열기전력 특성)

  • 정우환
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.849-854
    • /
    • 2003
  • Temperature dependent thermoelectric power (TEP) of La$_{2.1}$ Sr$_{1.9}$ Mn$_3$O$_{10}$ system has been studied in the temperature range 80-373 K. In the low temperature ferromagnetic regime, TEP (S) follows an expression of formS=S$_{0}$ +S$_{1.5}$ T$^{1.5}$ +S$_4$T$^4$ over the wide range of temperature. The broad peak below the ferromagnetic transition and complicated temperature dependence of S may be understood on the basis of electron-magnon scattering as predicted for an itinerant ferromagnet. High temperature TEP data can be well fitted with Mott's small polaron hopping model.

Crystallographic, Magnetic and Mössbauer Study of Phase Transition in LaVO3

  • Yoon, Sung-Hyun
    • Journal of Magnetics
    • /
    • v.12 no.3
    • /
    • pp.108-112
    • /
    • 2007
  • Nature of phase transition in $LaVO_3$ has been studied using X-ray diffraction, SQUID magnetometer, and $M\"{o}ssbauer$ spectroscopy with 1% of $^{57}Fe$ doped sample. The crystal structure was orthorhombic with space group Pnma. Antiferromagnetic phase transition temperature $T_N$ was 140K, below which a weak ferromagnetic trace has been found. $M\"{o}ssbauer$ spectra below $T_N$ were single set of hyperfine sextet, which enabled us to discard the possibility of two inequivalent magnetic sites or uncompensated antiferromagnetism. Hyperfine magnetic field abruptly disappeared as low as about 90K, much below $T_N$.

NMR for magnetite

  • Lee, Soonchil
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.4
    • /
    • pp.101-106
    • /
    • 2018
  • Magnetite is the oldest magnet material known to mankind. It is getting attention again from solid state physics researchers now a days because it is one of the most strongly correlated electron systems. Spin, charge, and orbital orders are interplaying with lattice and involved in the Verwey transition where magnetization, conductivity, and structure changes suddenly. The peculiar ordering states above and below the transition temperature mainly originate from the coexistence of $Fe^{2+}$ and $Fe^{3+}$ ions in the B site of the inverse spinel structure. In particular, the state of the charge and orbital order was the oldest and most intriguing problem. NMR has made significant contribution to the investigation of this question. A. Abragam stated that there is no doubt that NMR is a very powerful tool for the study of ferromagnetic and antiferromagnetic materials. In this mini-review, a short history of NMR investigation of magnetite is presented, providing a support to Abragam's claim.

Ferromagnic Transitition Temperature of Diluted Magnetic III-V Based Semiconductor (III-V 화합물 자성 반도체의 강자성체 천이온도에 관한 연구)

  • Lee, Hwa-Yong;Kim, Song-Gang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.143-147
    • /
    • 2001
  • Ferromagnetism in manganese compound semiconductors open prospects for tailoring magnetic and spin-related phenomena in semiconductors with a precision specific to III-V compounds. Also it addresses a question about the origin of the magnetic interactions that lead to a Curie temperature(Tc) as high as 110 K for a manganese concentration of just 5%. Zener's model of ferromagnetism, originally suggested for transition metals in 1950, can explain Tc of $Ga_{1-x}Mn_x$ As and that of its IT-VI counterpart $Zn_{1-x}Mn_x$ Te and is used to predict materials with Tc exceeding room temperature, an important step toward semiconductor electronics that use both charge and spin. In this article, we present not only the experimental result but calculated Curie temperature by RKKY interaction. The problem in making III-V semiconductor has been the low solubility of magnetic elements, such as manganese, in the compound, since the magnetic effects are roughly proportional to the concentration of the magnetic ions. Low solubility of magnetic elements was overcome by low-temperature nonequilibrium MBE{molecular beam epitaxy) growth, and ferromagnetic (Ga,Mn)As was realized. Magnetotransport measurements revealed that the magnetic transition temperature can be as high as 110 K for a small manganese concentration.

  • PDF

Superconducting critical temperature in FeN-based superconductor/ferromagnet bilayers

  • Hwang, T.J.;Kim, D.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.2
    • /
    • pp.5-7
    • /
    • 2016
  • We present an experimental investigation of the superconducting transition temperatures, $T_c$, of superconductor/ferromagnet bilayers with varying the thickness of ferromagnetic layer. FeN was used for the ferromagnetic (F) layer, and NbN and Nb were used for the superconducting (S) layer. The results were obtained using three different-thickness series of the S layer of the S/F bilayers: NbN/FeN with NbN thickness, $d_{NbN}{\approx}9.3nm$ and $d_{NbN}{\approx}10nm$, and Nb/FeN with Nb thickness $d_{Nb}{\approx}15nm$. $T_c$ drops sharply with increasing thickness of the ferromagnetic layer, $d_{FeN}$, before maximal suppression of superconductivity at $d_{FeN}{\approx}6.3nm$ for $d_{NbN}{\approx}10nm$ and at $d_{FeN}{\approx}2.5nm$ for $d_{Nb}{\approx}15nm$, respectively. After shallow minimum of $T_c$, a weak $T_c$ oscillation was observed in NbN/FeN bilayers, but it was hardly observable in Nb/FeN bilayers.

Magnetic Semiconductors Thin Films-Unidirectional Anisotropy

  • Lubecka, M.;Maksymowicz, L.J.;Szymczak, R.;Powroznik, W.
    • Journal of Magnetics
    • /
    • v.4 no.1
    • /
    • pp.33-37
    • /
    • 1999
  • Unidirectional magnetic anisotropy field ($H_an$) was investigated for thin films of $CdCr{2-2x}In_{2X}Se_4 (0$\leq$x$\leq$0.2). This anisotropy originates from the microscopic anisotropic Dzyaloshinskii-Moriya (DM) interaction which arise from the spin-orbit scattering of the conduction electrons by the nonmagnetic impurities. This interaction maintains the remanent magnetization in the direction of the initial applied field. Then the single easy direction of the magnetization is parallel to the direction of the magnetic field. The anisotropy produced by field cooling is unidirectional I.e. the spins system deeps some memory of the cooling field direction. The chalcogenide spinel of$ CdCr_{2-2x}In){2X}Se_4$belongs to the class of the magnetic semiconductors. The magnetic disordered state is obtained when ferromagnetic structure is diluted by In. Then we have the mixed phase characterised by coexistence the magnetic long range ordering (IFN-infinite ferromagnetic network) and the spin glass order (Fc-finite clusters). The total magnetic anisotropy energy depends on the state of magnetic ordering. In our study we concentrated on the magnetic state with reentrant transition and spin glass state. The polycrystalline $ CdCr_{2-2x}In){2X}Se_4$ thin films were obtained by rf sputtering technique. We applied the ferromagnetic resonance (FMR) and M-H loop techniques for determining the temperature composition dependencies of Han. From the experimental data, we have found that Han decreases almost linearly when temperature is increased and in the low temperature is about three times bigger at SG state with comparison to the state with REE.

  • PDF