• Title/Summary/Keyword: Ferromagnetic Material

Search Result 185, Processing Time 0.032 seconds

Magnetic Properties of La-doped YIG films prepared by LPE(Liquid Phase Epitaxy) (LPE 성장법으로 성장시킨 La 을 첨가한 YIG 막의 자성특성)

  • 김동영;한진우;김명수;이상석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.89-92
    • /
    • 2000
  • Liquid Phase Epitaxy 법을 이용하여 La이 첨가된 YIG(Yitrium Ion Garnet)막을 성장시켰다. X선 회절 분석을 이용하여 La의 첨가량을 변화시키며 제조된 막의 격자상수를 조사한 결과, La의 첨가량이 증가함에 따라 성장된 막의 격자상수도 증가하였으며 Y/La이 20인 경우, 막의 격자상수가 기판으로 사용한 GGG의 격자상수와 일치하였다. VSM(Vibration Sample Magnetometer)를 이용하여 구한 막의 포화자화 값은 La의 첨가량과 관계없이 순수한 YIG의 경우와 같은 값인 1750정도로 거의 일정하였다. FMR(Ferro Magnetic Resonance) 측정장치를 이용한 막의 강자성 공명선폭을 측정결과 막의 공명선폭은 La의 첨가량과 관계없이 모든 경우에 순수한 YIG보다 감소하였다. 실험범위내의 La의 첨가에 대해서 기판과의 격자불일치가 순수한 YIG의 경우보다 감소하기 때문이다. La의 첨가량이 많은 조건에서 성장시킨 막은 공명선폭이 크고 두께의 증가에 따라서 선폭이 증가하였으며, Y/La가 20과 30일 때 성장시킨 막에서는 공명선폭의 절대값도 작고 두께에 따른 공명선폭의 변화도 관찰되지 않았다.

  • PDF

Emission of spin-polarized light in GaN-based spin LEDs (GaN계 스핀 발광소자의 스핀편극된 빛의 발광)

  • Ham, Moon-Ho;Yoon, Suk-Ho;Park, Yong-Jo;Myoung, Jae-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.150-152
    • /
    • 2005
  • We investigated the fabrication and characteristics of spin-polarized LEDs based on GaN using (Ga,Mn)N as spin injection source. (Ga,Mn)N thin films were found to exhibit the ferromagnetic ordering above room temperature and the negative MR up to room temperature. The electrical characteristics in spin LEDs did not degraded in spite of the insertion of (Ga,Mn)N films. In EL spectra of spin LEDs, it is confirmed that spin LEDs emit the strong light at 7 K as well as room temperature. These results suggest that it is possible to emit spin-polarized light in our spin LEDs.

  • PDF

Giant magnetoresistance of new macroscopic ferrimagnets in the system Co-TbN

  • Kim, T. W.;H. B. Chung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.45-48
    • /
    • 1998
  • We first report the GMR effect of new macroscopic ferrimagnet, Co-TbN. The Co-TbN system demonstrates typical macroscopic ferrimagnet properties which are a magnetic compensation Point and negative giant magnetoresistance (GMR) which is caused by the spin scattering contribution quite different from those of ordinary GMR materials. The Co-TbN system with 32 % TbN composition showed 0.72 % GMR in fields up to 8 kOe at room temperature and 9 % GMR at 250 K in 40 kOe. The GMR effect in the Co-TbN system increases with increasing temperature, which is due to the increase of ferromagnetic alignment of the Co and TbN in a field caused by the decrease of exchange coupling by temperature.

  • PDF

Magnetotransport Properties of Co-Fe/Al-O/Co-Fe Tunnel Junctions Oxidized with Microwave Excited Plasma

  • Nishikawa, Kazuhiro;Orata, Satoshi;Shoyama, Toshihiro;Cho, Wan-Sick;Yoon, Tae-Sick;Tsunoda, Masakiyo;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.63-71
    • /
    • 2002
  • Three fabrication techniques for forming thin barrier layer with uniform thickness and large barrier height in magnetic tunnel junction (MTJ) are discussed. First, the effect of immiscible element addition to Cu layer, a high conducting layer generally placed under the MTJ, is investigated in order to reduce the surface roughness of the bottom ferromagnetic layer, on which the barrier is formed. The Ag addition to the Cu layer successfully realizes the smooth surface of the ferromagnetic layer because of the suppression of the grain growth of Cu. Second, a new plasma source, characterized as low electron energy of 1 eV and high density of $10^{12}$ $cm^{-3}$, is introduced to the Al oxidation process in MTJ fabrication in order to reduce damages to the barrier layer by the ion-bombardment. The magnetotransport properties of the MTJs are investigated as a function of the annealing temperature. As a peculiar feature, the monotonous decrease of resistance area product (RA) is observed with increasing the annealing temperature. The decrease of the RA is due to the decrease of the effective barrier width. Third, the influence of the mixed inert gas species for plasma oxidization process of metallic Al layer on the tunnel magnetoresistance (TMR) was investigated. By the use of Kr-O$_2$ plasma for Al oxidation process, a 58.8 % of MR ratio was obtained at room temperature after annealing the junction at $300{^{\circ}C}$, while the achieved TMR ratio of the MTJ fabricated with usual Ar-$0_2$ plasma remained 48.4%. A faster oxidization rate of the Al layer by using Kr-O$_2$ plasma is a possible cause to prevent the over oxidization of Al layer and to realize a large magnetoresistance.

Relationship between Magnetic and Mechanical Properties of Cermet Tools (절삭공구용 서멧의 자기적 특성과 기계적 성질의 관계)

  • Ahn, Dong-Gil;Lee, Jeong-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.3
    • /
    • pp.231-237
    • /
    • 2000
  • The commercial cermet cutting tools consist of multi-carbide and a binder metal of iron group, such as cobalt and nickel which are ferromagnetic. In this paper, a new approach to evaluate the mechanical properties of TiCN based cermet by magnetic properties were studied in relation to binder content and sintering conditions. The experimental cermet was prepared using commercial composition with the other binder contents by PM process. It was found that the magnetic properties of the sintered cermets remarkably depended on the microstructure and the total carbon content. The magnetic saturation was proportional to increment of coercive force. At high carbon content in sintered cermet, the magnetic saturation was increased by decreasing the concentration of solutes such as W, Mo, Ti in Co-Ni binder. As the coercive force increases, the hardness usually increases. The strength and toughness of the cermet also increased with increasing the magnetic saturation. The measurement of magnetic properties made it possible to evaluate the mechanical properties in the cermet cutting tools.

  • PDF

Magnetic Field Analysis for Development of Magnetic Torquer

  • Yim, Jo-Ryeong;Lee, Seon-ho;Rhee, Seung-Wu
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.63-63
    • /
    • 2003
  • There are many actuators and sensors used for attitude control system for KOMPSAT such as Reaction Wheel Assembly, Magnetic Torque Assembly, Dual Thruster Module, Solar array Drive, Three Axis Magnetometer, Conical Earth Sensor, Fine Sun Sensor Assembly, Coarse Sun Sensor Assembly, Gyro Reference Assembly and so on. For KOMPSA T satellite it has been considered using the Magnetic Torquer (MTQ) generating the magnetic dipole moment. In general, the magnetic dipole moment for satellite attitude control system is used for dumping out the excessive reaction wheel momentum so that the reaction wheel speed is not saturated. The objective of this study is to analyze the magnetic field characteristics generated by the Magnetic Torquer using the Maxwell 2D Field Simulator software. Currently, the developing model (DM) of the MTQ is being developed and manufactured at a company under the supervision of KARL MTQ is an electromagnet consisting of a ferromagnetic cylindrical core on which an excitation coil is wound. A current is passed through the coil to produce a dipole momentum in the ferromagnetic core. The configuration of the MTQ will be introduced in the presentation. The 2 dimensional model of the MTQ is drawn as axisymmetric models in RZ plane, and each corresponding material is assigned to the each MTQ object, the core, coil, and background. After the boundary conditions, current sources, and solution parameters are set up, the magnetic field intensities, directions, and other values specified by users can be calculated by using the finite element analysis. The theoretical magnetic field quantities obtained by the Maxwell 2D Simulator can be used for the basis of the development of the MTQ.

  • PDF

Assessment of Temporary Radioactivation for Tissue Expanders in Breast Radiation Therapy: Preliminary Study

  • Hwajung Lee;Do Hoon Oh;Lee Yoo;Minsoo Chun
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.2
    • /
    • pp.100-106
    • /
    • 2023
  • Background: As breast tissue expanders consist of metallic materials in the needle guard and ferromagnetic injection port, irradiation can produce radioactivation. Materials and Methods: A CPX4 (Mentor Worldwide LLD) breast tissue expander was exposed using the Versa HD (Elekta) linear accelerator. Two photon energies of 6 and 10 MV-flattening filter free (FFF) beams with 5,000 monitor units (MU) were irradiated to identify the types of radiation. Furthermore, 300 MU with 10 MV-FFF beam was exposed to the CPX4 breast tissue expander by varying the machine dose rates (MDRs) 600, 1,200, and 2,200 MU/min. To assess the instantaneous dose rates (IDRs) solely from the CPX4, a tissue expander was placed outside the treatment room after beam irradiation, and a portable radioisotope identification device was used to identify the types of radiation and measure IDR. Results and Discussion: After 5,000 MU delivery to the CPX4 breast tissue expander, the energy spectrum whose peak energy of 511 keV was found with 10 MV-FFF, while there was no resultant one with 6 MV-FFF. The time of each measurement was 1 minute, and the mean IDRs from the 10 MV-FFF were 0.407, 0.231, and 0.180 μSv/hr for the three successive measurements. Following 10 MV-FFF beam irradiation with 300 MU indicated around the background level from the first measurement regardless of MDRs. Conclusion: As each institute room entry time protocol varies according to the working hours and occupational doses, we suggest an addition of 1 minute from the institutes' own room entry time protocol in patients with CPX4 tissue expander and the case of radiotherapy vaults equipped with a maximum energy of 10 MV photon beams.

Preparation and Magnetic Properties of Amorphous Spinel Ferrite (비정질 Spinel Ferrite의 제조와 그 자기적 특성)

  • 김태옥;김창곤
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.1
    • /
    • pp.29-36
    • /
    • 1992
  • The fundamental research about the amorphous ferrite, which is expected as the important material for electronic and information imdustry in future, was carried out in this work. Because the ferromagnetic amorphous ferrites reported recently are very inferior in magnetic properties than the crystalline ferrites, the development of the more ferromagnetic amorphous ferrites is required. In order to obtain the fundamental data for the preparation of amorphous ferrites, the hand-made twin-roller quenching apparatus was used for rapid quenching. Investigation on amorphous ferrite in the system $CaO-Bi_{2}O_{3}-Fe_{2}O_{3}$ has been carried out in the composition of 10-50 mole% CaO, 10-50 mole% $Bi_{2}O_{3}$, 40-70 mole% $Fe_{2}O_{3}$. Large magnetization values were obtained near the composition of the mixture of $BiFeO_{3}$ and $CaFe_{4}O_{7}$. Especially, an amorphous ${(CaO)}_{20}{(Bi_{2}O_{3})_{15}{(Fe_{2}O_{3})}_{65}$ specimen has a magmetization value of about 21.84 emu/g at 0K(10 kOe). Fe $M\"{o}ssbauer$ absorption spectrum indicates that this specimen is compsed of two amorphous phases, antiferromagnetic phase($\alpha$-phase) and ferromagnetic phase($\beta$-phase). Crystallization of this amorphous ferrite was happened in steps-$550^{\circ}C$ and $775^{\circ}C$, then observed crystal phases were perovskite phase of $BiFeO_{3}$ and $Fe_{2}O_{3}$ phase.

  • PDF

Microstructure and Magnetic Properties of Pulsed DC Magnetron Sputtered Zn0.8Co0.2O Film Deposited at Various Substrate Temperatures (증착온도를 달리하여 제조한 Zn0.8Co0.2O 박막의 미세조직 및 자기 특성)

  • Kang, Young-Hun;Kim, Bong-Seok;Tai, Weon-Pil;Kim, Ki-Chul;Suh, Su-Jeung;Park, Tae-Seok;Kim, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.2 s.285
    • /
    • pp.79-84
    • /
    • 2006
  • We studied the microstructure and magnetic property of the pulsed DC magnetron sputtered $Zn_{\0.8}Co_{0.2}O$ film as a function of substrate temperatures. The X-ray patterns of the $Zn_{\0.8}Co_{0.2}O$ film showed a strong (002) preferential orientation at $500^{\circ}C$. The films with a crystallite size of 23-35 nm were grown in the form of nano-sized structure and this tendency was remarkable with increasing substrate temperature. The UV-visible result showed that the $Zn_{\0.8}Co_{0.2}O$ film prepared above $300^{\circ}C$ has a high optical transmittance of over $80\%$ in the visible region. The absorption bands were observed due to sp-d interchange action by $Co^{2+}$ complex ion and dd transition in the region from 500 to 700nm. The resistivity of the film was below $10^{-1}\;\Omega-cm\;above\;300^{\circ}C$. The AGM analysis results for the all films showed the magnetic hysteresis curves of ferromagnetic nature. The low electrical resistivity and room temperature ferromagnetism of ZnCoO thin films 'deposited above $300^{\circ}C$ suggested the possibility for the application to Diluted Magnetic Semiconductors (DMSs).

Selective Etching of Magnetic Layer Using CO/$NH_3$ in an ICP Etching System

  • Park, J.Y.;Kang, S.K.;Jeon, M.H.;Yeom, G.Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.448-448
    • /
    • 2010
  • Magnetic random access memory (MRAM) has made a prominent progress in memory performance and has brought a bright prospect for the next generation nonvolatile memory technologies due to its excellent advantages. Dry etching process of magnetic thin films is one of the important issues for the magnetic devices such as magnetic tunneling junctions (MTJs) based MRAM. CoFeB is a well-known soft ferromagnetic material, of particular interest for magnetic tunnel junctions (MTJs) and other devices based on tunneling magneto-resistance (TMR), such as spin-transfer-torque MRAM. One particular example is the CoFeB - MgO - CoFeB system, which has already been integrated in MRAM. In all of these applications, knowledge of control over the etching properties of CoFeB is crucial. Recently, transferring the pattern by using milling is a commonly used, although the redeposition of back-sputtered etch products on the sidewalls and the low etch rate of this method are main disadvantages. So the other method which has reported about much higher etch rates of >$50{\AA}/s$ for magnetic multi-layer structures using $Cl_2$/Ar plasmas is proposed. However, the chlorinated etch residues on the sidewalls of the etched features tend to severely corrode the magnetic material. Besides avoiding corrosion, during etching facets format the sidewalls of the mask due to physical sputtering of the mask material. Therefore, in this work, magnetic material such as CoFeB was etched in an ICP etching system using the gases which can be expected to form volatile metallo-organic compounds. As the gases, carbon monoxide (CO) and ammonia ($NH_3$) were used as etching gases to form carbonyl volatiles, and the etched features of CoFeB thin films under by Ta masking material were observed with electron microscopy to confirm etched resolution. And the etch conditions such as bias power, gas combination flow, process pressure, and source power were varied to find out and control the properties of magnetic layer during the process.

  • PDF