• Title/Summary/Keyword: Ferroelectric materials

Search Result 524, Processing Time 0.034 seconds

Ferroelectric-gate Field Effect Transistor Based Nonvolatile Memory Devices Using Silicon Nanowire Conducting Channel

  • Van, Ngoc Huynh;Lee, Jae-Hyun;Sohn, Jung-Inn;Cha, Seung-Nam;Hwang, Dong-Mok;Kim, Jong-Min;Kang, Dae-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.427-427
    • /
    • 2012
  • Ferroelectric-gate field effect transistor based memory using a nanowire as a conducting channel offers exceptional advantages over conventional memory devices, like small cell size, low-voltage operation, low power consumption, fast programming/erase speed and non-volatility. We successfully fabricated ferroelectric nonvolatile memory devices using both n-type and p-type Si nanowires coated with organic ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] via a low temperature fabrication process. The devices performance was carefully characterized in terms of their electrical transport, retention time and endurance test. Our p-type Si NW ferroelectric memory devices exhibit excellent memory characteristics with a large modulation in channel conductance between ON and OFF states exceeding $10^5$; long retention time of over $5{\times}10^4$ sec and high endurance of over 105 programming cycles while maintaining ON/OFF ratio higher $10^3$. This result offers a viable way to fabricate a high performance high-density nonvolatile memory device using a low temperature fabrication processing technique, which makes it suitable for flexible electronics.

  • PDF

Room-Temperature Ferromagnetic Behavior in Ferroelectric BiFeO3-BaTiO3 System Through Engineered Superexchange Path (초교환 상호작용 제어를 통해 강유전 BiFeO3-BaTiO3 시스템에서 유도된 상온 강자성 거동)

  • Ko, Nu-Ri;Cho, Jae-Hyeon;Jang, Jongmoon;Jo, Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.386-392
    • /
    • 2021
  • Multiferroics exhibiting the coexistence and a possible coupling of ferromagnetic and ferroelectric order are attracting widespread interest in terms of academic interests and possible applications. However, room-temperature single-phase multiferroics with soft ferromagnetic and displacive ferroelectric properties are still rare owing to the contradiction in the origin of ferromagnetism and ferroelectricity. In this study, we demonstrated that sizable ferromagnetic properties are induced in the ferroelectric bismuth ferrite-barium titanate system simply by introducing Co ions into the A-site. It is noted that all modified compositions exhibit well-saturated magnetic hysteresis loops at room temperature. Especially, 70Bi0.95Co0.05FeO3-30Ba0.95Co0.05TiO3 manifests noticeable ferroelectric and ferromagnetic properties; the spontaneous polarization and the saturation magnetization are 42 µC/cm2 and 3.6 emu/g, respectively. We expect that our methodology will be widely used in the development of perovskite-structured multiferroic oxides.

One-Dimensional Modeling For Nonlinear Behavior of Ferroelectric Materials (강유전체의 비선형 거동에 대한 1차원 모델링)

  • Kim, Sang-Joo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1378-1383
    • /
    • 2003
  • A ferroelectric (called piezoelectric afterwards) wafer has been widely used as a key component of actuators or sensors of a layer type. According to recent researches, the piezoelectric wafer behaves in a nonlinear way under excessive electro-mechanical loadings. In the present paper, one-dimensional constitutive equations for the nonlinear behavior of a piezoelectric wafer are proposed based on the principles of thermodynamics and a simple viscoplasticity theory. The predictions of the developed model are compared with experimental observations.

  • PDF

Fabrication and Characterization of MFIS-FET using Au/SBT/LZO/Si structure

  • Im, Jong-Hyun;Lee, Gwang-Geun;Kang, Hang-Sik;Jeon, Ho-Seung;Park, Byung-Eun;Kim, Chul-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.174-174
    • /
    • 2008
  • Non-volatile memories using ferroelectric-gate field-effect transistors (Fe-FETs) with a metal/ferroelectric/semiconductor gate stack (MFS-FETs) make non-destructive read operation possible. In addition, they also have features such as high switching speed, non-volatility, radiation tolerance, and high density. However, the interface reaction between ferroelectric materials and Si substrates, i.e. generation of mobile ions and short retention, make it difficult to obtain a good ferroelectric/Si interface in an MFS-FET's gate. To overcome these difficulties, Fe-FETs with a metal/ferroelectric/insulator/semiconductor gate stack (MFIS-FETs) have been proposed, where insulator as a buffer layer is inserted between ferroelectric materials and Si substrates. We prepared $SrBi_2Ta_2O_9$ (SBT) film as a ferroelectric layer and $LaZrO_x$ (LZO) film as a buffer layer on p-type (100) silicon wafer for making the MFIS-FET devices. For definition of source and drain region, phosphosilicate glass (PSG) thin film was used as a doping source of phosphorus (P). Ultimately, the n-channel ferroelectric-gate FET using the SBT/LZO/Si Structure is fabricated. To examine the ferroelectric effect of the fabricated Fe-FETs, drain current ($I_d$) versus gate voltage ($V_g$) characteristics in logarithmic scale was measured. Also, drain current ($I_d$) versus drain voltage ($V_d$) characteristics of the fabricated SBT/LZO/Si MFIS-FETs was measured according to the gate voltage variation.

  • PDF

Nonvolatile Ferroelectric Memory Devices Based on Black Phosphorus Nanosheet Field-Effect Transistors

  • Lee, Hyo-Seon;Lee, Yun-Jae;Ham, So-Ra;Lee, Yeong-Taek;Hwang, Do-Gyeong;Choe, Won-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.281.2-281.2
    • /
    • 2016
  • Two-dimensional van der Waals (2D vdWs) materials have been extensively studied for future electronics and materials sciences due to their unique properties. Among them, black phosphorous (BP) has shown infinite potential for various device applications because of its high mobility and direct narrow band gap (~0.3 eV). In this work, we demonstrate a few-nm thick BP-based nonvolatile memory devices with an well-known poly(vinylidenefluoride-trifluoroethylene) [P(VDF-TrFE)] ferroelectric polymer gate insulator. Our BP ferroelectric memory devices show the highest linear mobility value of $1159cm^2/Vs$ with a $10^3$ on/off current ratio in our knowledge. Moreover, we successfully fabricate the ferroelectric complementary metal-oxide-semiconductor (CMOS) memory inverter circuits, combined with an n-type $MoS_2$ nanosheet transistor. Our memory CMOS inverter circuits show clear memory properties with a high output voltage memory efficiency of 95%. We thus conclude that the results of our ferroelectric memory devices exhibit promising perspectives for the future of 2D nanoelectronics and material science. More and advanced details will be discussed in the meeting.

  • PDF

Current Status and Prospects of FET-type Ferroelectric Memories

  • Ishiwara, Hiroshi
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.1
    • /
    • pp.1-14
    • /
    • 2001
  • Current status and prospects of FET-type FeRAMs (ferroelectric random access memories) are reviewed. First, it is described that the most important issue for realizing FET-type FeRAMs is to improve the data retention characteristics of ferroelectric-gate FETs. Then, necessary conditions to prolong the retention time are discussed from viewpoints of materials, device structure, and circuit configuration. Finally, recent experimental results related to the FET-type memories are introduced, which include optimization of a buffer layer that is inserted between the ferroelectric film and a Si substrate, development of a new ferroelectric film with a small remnant polarization value, proposal and fabrication of a 1T2C-type memory cell with good retention characteristics, and so on.

  • PDF

Feasibility of ferroelectric materials as a blocking layer in charge trap flash (CTF) memory

  • Zhang, Yong-Jie;An, Ho-Myoung;Kim, Hee-Dong;Nam, Ki-Hyun;Seo, Yu-Jeong;Kim, Tae-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.119-119
    • /
    • 2008
  • The electrical characteristics of Metal-Ferroelectric-Nitride-Oxide-Silicon (MFNOS) structure is studied and compared to the conventional Silicon-Oixde-Nitride-Oxide-Silicon (SONOS) capacitor. The ferroelectric blocking layer is SrBiNbO (SBN with Sr/Bi ratio 1-x/2+x) with the thickness of 200 nm and is fabricated by the RF sputter. The memory windows of MFNOS and SONOS capacitors with sweep voltage from +10 V to -10 V are 6.9 V and 5.9 V, respectively. The effect of ferroelectric blocking layer and charge trapping on the memory window was discussed. The retention of MFNOS capacitor also shows the 10-years and longer retention time than that of the SONOS capacitor. The better retention properties of the MFNOS capacitor may be attributed to the charge holding effect by the polarization of ferroelectric layer.

  • PDF

Crystal Structure and Polarization Properties of Ferroelectric Nd-Substituted $Bi_4Ti_3O_{12}$ Thin Films Prepared by MOCVD (강유전체 $(Bi,Nd)_4Ti_3O_{12}$ 박막의 결정 구조와 분극 특성)

  • Kang, Dong-Kyun;Park, Won-Tae;Kim, Byong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.135-136
    • /
    • 2006
  • Bismuth titanate ($Bi_4Ti_3O_{12}$, BIT) thin film has been studied intensively in the past decade due to its large remanent polarization, low crystallization temperature, and high Curie temperature. Substitution of various trivalent rare-earth cations (such as $La^{3+}$, $Nd^{3+}$, $Sm^{3+}$ and $Pr^{3+}$) in the BIT structure is known to improve its ferroelectric properties, such as remanent polarization and fatigue characteristics. Among them, neodymuim-substituted bismuth titanate, ((Bi, Nd)$_4Ti_3O_{12}$, BNT) has been receiving much attention due to its larger ferroelectricity. In this study, Ferroelectric $Bi_{3.3}Nd_{0.7}Ti_3O_{12}$ thin films were successfully fabricated by liquid delivery MOCVD process onto Pt(111)/Ti/$SiO_2$/Si(l00) substrates. Fabricated polycrystailine BNT thin films were found to be random orientations, which were confirmed by X-ray diffraction and scanning electron microscope analyses. The remanent polarization of these films increased with increase in annealing temperature. And the film also demonstrated fatigue-free behavior up to $10^{11}$ read/write switching cycles. These results indicate that the randomly oriented BNT thin film is a promising candidate among ferroelectric materials useful for lead-free nonvolatile ferroelectric random access memory applications.

  • PDF

Effects of Lanthanides-Substitution on the Ferroelectric Properties of Bismuth Titanate Thin Films Prepared by MOCVD Process

  • Kim, Byong-Ho;Kang, Dong-Kyun
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.688-692
    • /
    • 2006
  • Ferroelectric lanthanides-substituted $Bi_4Ti_3O_{12}$ $(Bi_{4-x}Ln_xTi_3O_{12}, BLnT)$ thin films approximately 200 nm in thickness were deposited by metal organic chemical vapor deposition onto Pt(111)/Ti/SiO$_2$/Si(100) substrates. Many researchers reported that the lanthanides substitution for Bi in the pseudo-perovskite layer caused the distortion of TiO$_6$ octahedron in the a-b plane accompanied with a shift of the octahedron along the a-axis. In this study, the effect of lanthanides (Ln=Pr, Eu, Gd, Dy)-substitution and crystallization temperature on their ferroelectric properties of bismuth titanate $(Bi_4Ti_3O_{12}, BIT)$ thin films were investigated. As BLnT thin films were substituted to lanthanide elements (Pr, Eu, Gd, Dy) with a smaller ionic radius, the remnant polarization (2P$_r$) values had a tendency to increase and made an exception of the Eu-substituted case because $Bi_{4-x}Eu_xTi_3O_{12}$ (BET) thin films had the smaller grain sizes than the others. In this study, we confirmed that better ferroelectric properties can be expected for films composed of larger grains in bismuth layered peroskite materials. The crystallinity of the thin films was improved and the average grain size increased as the crystallization temperature,increased from 600 to 720$^{\circ}C$. Moreover, the BLnT thin film capacitor is characterized by well-saturated polarization-electric field (P-E) curves with an increase in annealing temperature. The BLnT thin films exhibited no significant degradation of switching charge for at least up to $1.0\times10^{11}$ switching cycles at a frequency of 1 MHz. From these results, we can suggest that the BLnT thin films are the suitable dielectric materials for ferroelectric random access memory applications.

Multi-Level FeRAM Utilizing Stacked Ferroelectric Structure (강유전성 물질을 이용한 Multi-level FeRAM 구조 및 동작 분석)

  • Seok Heon Kong;June Hyeong Kim;Seul Ki Hong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.73-77
    • /
    • 2023
  • In this study, we developed a Multi-level FeRAM (Ferroelectrics random access memory) device utilizing different ferroelectric materials and analyzed its operation through C-V analysis using simulations. To achieve Multi-level operation, we proposed an MFM (Multi-Ferroelectric Material) structure by depositing two different ferroelectric materials with distinct properties horizontally on the same bottom electrode and subsequently adding a gate electrode on top. By analyzing C-V peaks based on the polarization phenomenon occurring under different voltage conditions for the two materials, we confirmed the feasibility of achieving Multi-level operation, where either one or both of the materials can be polarized. Furthermore, we validated the process for implementing the proposed structure using semiconductor fabrication through process simulations. These results signify the significance of the new structure as it allows storing multiple states in a single memory cell, thereby greatly enhancing memory integration.