• Title/Summary/Keyword: Ferroelectric domain structures

Search Result 10, Processing Time 0.021 seconds

Observation of Ferroelectric Domain Evolution Processes of Pb(Zr,Ti)O3 Ceramic Using Piezoresponse Force Microscopy (Piezoresponse Force Microscopy를 이용한 Pb(Zr,Ti)O3 세라믹의 단계적 Poling에 의한 강유전체 도메인 진화 과정 관찰)

  • Kim, Kwanlae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.20-24
    • /
    • 2019
  • Ferroelectric material properties are strongly governed by domain structures and their evolution processes, but the evolution processes of complex domain patterns during a macroscopic electrical poling process are still elusive. In the present work, domain-evolution processes in a PZT ceramic near the morphotropic phase-boundary composition were studied during a step-wise electrical poling using piezoresponse force microscopy (PFM). Electron backscatter diffraction was used with the PFM data to identify the grain boundaries in the region of interest. In response to an externally the applied electric field, growth and retreat of non-$180^{\circ}$ domain boundaries wasere observed. The results indicate that ferroelectric polarization-switching nucleates and evolves in concordance with the pattern of the pre-existing domains.

Periodically Poled $KNbO_3$ Crystals for Quasi-Phase-Matching

  • Kim, Joong-Hyun;Lee, Sooseok;Yoon, Choon-Sup
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.18-18
    • /
    • 2002
  • Although it was suggested in 1962 that an efficient wavelength conversion could be achieved using ferroelectric crystals of periodic 180° domains, it was not until 1990's that quasi-phase-matching (QPM) became realized, as technology for periodic poling of LiNbO₃ crystals was readily available. Since ferroelectric domain inversion brings about change of the sign of second-order nonlinear susceptibility, periodically poled ferroelectric structures provide an ideal way of achieving QPM for second-harmonic generation and optical parametric oscillation. Periodically poled ferroelectric domains can also be utilized for optical devices, such as Brags electrooptic modulators. fabrication of stable periodic domain structures depends on a number of poling parameters of a ferroelectric crystal, such as coercive field, internal field and electrical conductivity. We present poling kinetics of KNbO₃ crystals, which involve domain nucleation and growth, backswitching, relaxation of internal field. Optimum poling conditions were established by designing a proper wave shape of external field. We demonstrate an efficient second-harmonic generation using QPM in a periodically poled KNbO₃ crystal.

  • PDF

Ferroelectric Domans in $BaTiO_3$ ($BaTiO_3$의 강유전성 분역)

  • 박봉모;정수진
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.1
    • /
    • pp.56-64
    • /
    • 1996
  • A large amount of papers about the cubic-to-tetragonal phase transition the ferroelectric domain structures of the BaTiO3 were already reported but there exist still some needs to observe the domain behaviors directly. In this study the domain structures of the tinned plates prepared from ta single crystal grown by the TSSG technique were observed using a polarizing microscope TE and X-ray topography. The spatial relation be-tween the orientation states of domains was investigated and the effects of external stresses and electric fields on the behaviors of ferroelectric and ferroelastic domains were studied. All the 90$^{\circ}$walls cut off in the crystal are the wedge shaped lamellar domains and all the straight boundaries in the observed domain patte군 can be interpreted as the head-to-tail 90$^{\circ}$walls. The irregular overlapped boundaries commonly observed by using a polarizing microscope and X-ray topography are complex combinations of well-known 90$^{\circ}$walls and are domain walls were predominant and were stabilized after surface polishing. In the paraelectric phase region the domain walls vanished but the residual surface strain patterns could be seen at the same positions of the stabilized 90$^{\circ}$a-a walls in the tetragonal phase region, These stabilized walls resulted from the surface strain had a memory effect in domain formation during the repeated phase transitions and could notr be affected by an external electtric field.

  • PDF

La doping into $Pb(Zr,\;Ti)O_{3}$ capacitors on domain structures

  • Yang, Bee-Lyong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.3
    • /
    • pp.157-160
    • /
    • 2002
  • The ferroelectric domain variation and electrical performance of $Pb(Zr,Ti)O_{3}$ (PZT) based capacitors through La additions were systematically studied. La substitution up to 10 % was performed to lower the coercive and saturation voltages of epitaxial ferroelectric capacitors grown on Si using a (Ti_{0.9}Al_{0.1})N/Pt$ conducting barrier composite. Ferroelectric capacitors substituted with 10 % La show significantly lower coercive voltage compared to capacitors with 0 % and 3 % La. This is attributed to a systematic microstructure change into $180^{\circ}C$ domain and decrease in the tetragonality (i.e., c/a ratio) of the ferroelectric phase. These capacitors show promise as storage elements in low power memory architectures.

Ferroelastic Domain Wall Motions in Lead Zirconate Titanate Under Compressive Stress Observed by Piezoresponse Force Microscopy

  • Kim, Kwanlae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.9
    • /
    • pp.546-550
    • /
    • 2017
  • Ferroelectric properties are governed by domain structures and domain wall motions, so it is of significance to understand domain evolution processes under mechanical stress. In the present study, in situ piezoresponse force microscopy (PFM) observation under compressive stress was carried out for a near-morphotropic PZT. Both $180^{\circ}$ and $non-180^{\circ}$ domain structures were observed from PFM images, and their habit planes were identified using electron backscatter diffraction in conjunction with PFM data. By externally applied mechanical stress, needle-like $non-180^{\circ}$ domain patterns were broadened via domain wall motions. This was interpreted via phenomenological approach such that the total energy minimization can be achieved by domain wall motion rather than domain nucleation mainly due to the local gradient energy. Meanwhile, no motion was observed from curvy $180^{\circ}$ domain walls under the mechanical stress, validating that $180^{\circ}$ domain walls are not directly influenced by mechanical stress.

Orientation States of Ferroelectric Domains and {111} Twins in $BaTiO_3$ ($BaTiO_3$의 {111}쌍정계면과 강유전 분역의 배향성)

  • 박봉모;정수진
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.228-234
    • /
    • 1996
  • It is very important to understand the domain structures of ferroelectric BaTiO3 in the poling process. Especially because {111} twinning is frequently observed in most BaTiO3 ceramics it is required to know the relations between the ferroelectric domains and the structural twin. In this study the domain structures of a {111} twinned crystal sample were observed under a polarizing microscope. and the relation between the {111} twin and the domain configurations could be classified into two types of 'V'-shape and linear shape penetrating perpendicular to the twin boundary. Domain formation obeys the symmetry of the {111} twining when a new domain structure is developed by heat treatment and surface deformation due to domain formation is also occured symmetrically between the both sides of the{111} twin boundary. This symmetrical behavior of the domains could be interpreted with the "head-to-tall" orientation of the domains across the {111} twin boundary.

  • PDF

INVESTIGATION OF DOMAIN STRUCTURES IN $LiNbO_3$ SINGLE CRYSTALS GROWN BY CZOCHRALSKI METHOD

  • Do, Won-Joong;Kyung Joo;Shin, Kwang-Bo;Auh, Keun-Ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.111-114
    • /
    • 1998
  • Lithium Niobate {{{{ { LiNbO}_{ 3} }}}} single crystals grown by Czichralski method at the congruent composition, have ferroelectric microdomains. These microdomins were investigated by chemical etching with hydrofluoric acid (HF) AND NITRIC ACID ({{{{ { HNO}_{3 } }}}}), and by us ing optical microscopy, scanning electron microscopy and atomic force microscopy

  • PDF

(K,Na)NbO3-based Lead-free Piezoelectric Materials: An Encounter with Scanning Probe Microscopy

  • Zhang, Mao-Hua;Thong, Hao Cheng;Lu, Yi Xue;Sun, Wei;Li, Jing-Feng;Wang, Ke
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.261-271
    • /
    • 2017
  • Environment-friendly $(K,Na)NbO_3-based$ (KNN) lead-free piezoelectric materials have been studied extensively in the past decade. Significant progress has been made in this field, manifesting competitive piezoelectric performance with that of lead-based, for specific application scenarios. Further understanding of the relationship between high piezoelectricity and microstructure or more precisely, ferroelectric domain structure, domain wall pinning effect, domain wall conduction and local polarization switching underpins the continuous advancement of piezoelectric properties, with the help of piezoresponse force microscopy (PFM). In this review, we will present the fundamentals of scanning probe microscopy (SPM) and its cardinal derivative in piezoelectric and ferroelectric world, PFM. Some representative operational modes and a variety of recent applications in KNN-based piezoelectric materials are presented. We expect that PFM and its combination with some newly developed technology will continue to provide great insight into piezoelectric materials and structures, and will play a valuable role in promoting the performance to a new level.

Multi-scale model for coupled piezoelectric-inelastic behavior

  • Moreno-Navarro, Pablo;Ibrahimbegovic, Adnan;Damjanovic, Dragan
    • Coupled systems mechanics
    • /
    • v.10 no.6
    • /
    • pp.521-544
    • /
    • 2021
  • In this work, we present the development of a 3D lattice-type model at microscale based upon the Voronoi-cell representation of material microstructure. This model can capture the coupling between mechanic and electric fields with non-linear constitutive behavior for both. More precisely, for electric part we consider the ferroelectric constitutive behavior with the possibility of domain switching polarization, which can be handled in the same fashion as deformation theory of plasticity. For mechanics part, we introduce the constitutive model of plasticity with the Armstrong-Frederick kinematic hardening. This model is used to simulate a complete coupling of the chosen electric and mechanics behavior with a multiscale approach implemented within the same computational architecture.

Structural Changes in Isothermal Crystallization Processes of Synthetic Polymers Studied by Time-Resolved Measurements of Synchrotron-Sourced X-Ray Scatterings and Vibrational Spectra

  • Tashiro, Kohji;Hama, Hisakatsu
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • The structural changes occurring in the isothermal crystallization processes of polyethylene (PE), poly-oxymethylene (POM), and vinylidene fluoridetrifluoroethylene (VDFTrFE) copolymer have been reviewed on the basis of our recent experimental data collected by the time-resolved measurements of synchrotron-sourced wide-angle (WAXS) and small-angle X-ray scatterings (SAXS) and infrared spectra. The temperature jump from the melt to a crystallization temperature could be measured at a cooling rate of 600-1,000 $^{\circ}C$/min, during which we collected the WAXS, SAXS, and infrared spectral data successfully at time intervals of ca. 10 sec. In the case of PE, the infrared spectral data clarified the generation of chain segments of partially disordered trans conformations immediately after the jump. These segments then became transformed into more-regular all-trans-zigzag forms, followed by the formation of an orthorhombic crystal lattice. At this stage, the generation of a stacked lamella structure having an 800-${\AA}$-long period was detected in the SAXS data. This structure was found to transfer successively to a more densely packed lamella structure having a 400-${\AA}$-long period as a result of the secondary crystallization of the amorphous region in-between the original lamellae. As for POM, the formation process of a stacked lamella structure was essentially the same as that mentioned above for PE, as evidenced from the analysis of SAXS and WAXS data. The observation of morphology-sensitive infrared bands revealed the evolution of fully extended helical chains after the generation of lamella having folded chain structures. We speculate that these extended chains exist as taut tie chains passing continuously through the neighboring lamellae. In the isothermal crystallization of VDFTrFE copolymer from the melt, a paraelectric high-temperature phase was detected at first and then it transferred into the ferroelectric low-temperature phase at a later stage. By analyzing the reflection profile of the WAXS data, the structural ordering in the high-temperature phase and the ferroelectric phase transition to the low-temperature phase of the multi-domain structure were traced successfully.