• Title/Summary/Keyword: Ferrocement

Search Result 23, Processing Time 0.018 seconds

[Retracted]Structural behavior of RC channel slabs strengthened with ferrocement

  • Yousry B.I. Shaheen;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.793-815
    • /
    • 2023
  • The current study looks at the experimental and numerical performance of ferrocement RC channel slabs reinforced with welded steel mesh, expanded steel mesh, and fiber glass mesh individually. Ten RC channel slabs with dimensions of 500 mm×40 mm×2500 mm were subjected to flexural loadings as part of the testing program. The type of reinforcing materials, the number of mesh layers, and the reinforcement volume fraction are the key parameters that can be changed. The main goal is to determine the impact of using new inventive materials to reinforce composite RC channel slabs. Using ANSYS -16.0 Software, nonlinear finite element analysis (NLFEA) was used to simulate the behavior of composite channel slabs. Parametric study is also demonstrated to identify variables that can have a significant impact on the model's mechanical behavior, such as changes in slab dimensions. The obtained experimental and numerical results indicated that FE simulations had acceptable accuracy in estimating experimental values. Also, it's significant to demonstrate that specimens reinforced with fiber glass meshes gained approximately 12% less strength than specimens reinforced with expanded or welded steel meshes. In addition, Welded steel meshes provide 24% increase in strength over expanded steel meshes when reinforcing RC channel slabs. In general, ferrocement specimens tested under flexural loadings outperform conventional reinforced concrete specimens in terms of ultimate loads and energy absorbing capacity.

The flexural behavior of ferrocement RC channel slabs

  • Yousry B.I. Shaheen;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.92 no.1
    • /
    • pp.1-23
    • /
    • 2024
  • The current study examines the experimental and numerical performance of reinforced concrete (RC) channel slabs made of ferrocement that have been reinforced with fiber glass, expanded steel mesh, and welded steel mesh. As part of the testing program, ten RC channel slabs with dimensions of 500 mm×40 mm×2500 mm were loaded flexibly. The three main factors that can be altered are the mesh layer count, the type of reinforcing materials, and the reinforcement volume fraction. The main objective is to assess the effects of fortifying composite RC channel slabs with novel inventive materials. ANSYS-16.0 Software was used to simulate the behavior of composite channel slabs using nonlinear finite element analysis (NLFEA). It also shows how parametric analysis can be used to pinpoint variables like variations in slab dimensions that could significantly affect the mechanical behavior of the model. The obtained experimental and numerical results showed that finite element (FE) simulations had a tolerable degree of accuracy in estimating experimental values. It is crucial to show that specimens strengthened with fiber glass meshes gained about 12% lessstrength than specimens strengthened with expanded or welded steel meshes. In addition, RC channel slab reinforcement made of welded steel meshes has a 24% higher strength than expanded steel meshes. Tested under flexural loads, ferrocement specimens outperform conventional reinforced concrete specimens in terms of ultimate loads and energy absorption.

Structural performance of ribbed ferrocement plates reinforced with composite materials

  • Shaheen, Yousry B.I.;Mahmoud, Ashraf M.;Refat, Hala M.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.567-594
    • /
    • 2016
  • The main objective of the current research is estimating the flexural behavior of ferrocement Ribbed Plates reinforced with composite material. Experimental investigation was carried out on fifteen plates; their dimensions were kept constant at 1200 mm in length, 600 mm width and 100 mm thick but with different volume fraction of steel reinforcement and number of ribs. Test specimens were tested until failure under three line loadings with simply supported conditions over a span of 1100 mm. Cracking patterns, tensile and compressive strains, deformation characteristics, ductility ratio, and energy absorption properties were observed and measured at all stages of loadings. Experimental results were compared to analytical models using ANSYS 10 program. Parametric study is presented to look at the variables that can mainly affect the mechanical behaviors of the model such as the change of plate length. The results showed that the ultimate strength, ductility ratio and energy absorption properties of the proposed ribbed plates are affected by the volume fraction and the type of reinforcement, and also proved the effectiveness of expanded metal mesh and woven steel mesh in reinforcing the ribbed ferrocement plates. In addition, the developed ribbed ferrocement plates have high strength, ductility ratio and energy absorption properties and are lighter in weight compared to the conventional RC ribbed plates, which could be useful for developed and developing countries alike. The Finite Element (FE) simulations gave good results comparing with the experimental results.

Investigation on the flexural behaviour of ferrocement pipes and roof panels subjected to bending moment

  • Alnuaimi, A.S.;Hago, A.W.;Al-Jabri, K.S.;Al-Saidy, A.H.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.503-527
    • /
    • 2009
  • This paper presents experimental results on the behaviour and ultimate load of fifteen pipes and six roof panels made of ferrocement. Additional results from three roof panels, carried out by others, are also compared with this research results. OPC cement, natural sand and galvanised iron wire mesh were used for the construction of 20 mm thick specimens. The pipe length was 2 m and roof panel length was 2.1 m. The main variables studied were the number of wire mesh layers which were 1, 2, 3, 4 and 6 layers, the inner pipe diameter which were 105, 210 and 315 mm, cross sectional shape of the panel which were channel and box sections and the depth of the edge beam which were 95 mm and 50 mm. All specimens were simply supported and tested for pure bending with test span of 600 mm at mid-span. Tests revealed that increasing the number of wire mesh layers increases the flexural strength and stiffness. Increasing the pipe diameter or depth of edge beam of the panel increases the cracking and ultimate moments. The change in the pipe diameter led to larger effect on ultimate moment than the effect of change in the number of wire mesh layers. The box section showed behaviour and strength similar to that of the channel with same depth and number of wire mesh layers.

Impact of openings on the structural performance of ferrocement I-Beams under flexural loads

  • Yousry B.I. Shaheen;Ghada M. Hekal;Ayman M. Elshaboury;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.371-390
    • /
    • 2024
  • Investigating the impact of openings on the structural behavior of ferrocement I-beams with two distinct types of reinforcing metallic and non-metallic meshes is the primary goal of the current study. Up until failure, eight 250x200x2200 mm reinforced concrete I-beams were tested under flexural loadings. Depending on the kind of meshes used for reinforcement, the beams are split into two series. A control I-beam with no openings and three beams with one, two, and three openings, respectively, are found in each series. The two series are reinforced with three layers of welded steel meshes and two layers of tensar meshes, respectively, in order to maintain a constant reinforcement ratio. Structural parameters of investigated beams, including first crack, ultimate load, deflection, ductility index, energy absorption, strain characteristics, crack pattern, and failure mode were reported. The number of mesh layers, the volume fraction of reinforcement, and the kind of reinforcing materials are the primary factors that vary. This article presents the outcomes of a study that examined the experimental and numerical performance of ferrocement reinforced concrete I-beams with and without openings reinforced with welded steel mesh and tensar mesh separately. Utilizing ANSYS-16.0 software, nonlinear finite element analysis (NLFEA) was applied to illustrate how composite RC I-beams with openings behaved. In addition, a parametric study is conducted to explore the variables that can most significantly impact the mechanical behavior of the proposed model, such as the number of openings. The FE simulations produced an acceptable degree of experimental value estimation, as demonstrated by the obtained experimental and numerical results. It is also noteworthy to demonstrate that the strength gained by specimens without openings reinforced with tensar meshes was, on average, 22% less than that of specimens reinforced with welded steel meshes. For specimens with openings, this value is become on average 10%.

[Retracted]Structural performance of RC beams with openings reinforced with composite materials

  • Shaheen, Yousry B.I.;Mahmoud, Ashraf M.
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.475-493
    • /
    • 2022
  • The results of research focusing on the experimental and numerical performance of ferrocement RC beams with openings reinforced with welded steel mesh, expanded steel mesh, fiber glass mesh, and polyethylene mesh independently are presented in this article. Casting and testing of fourteen reinforced concrete beams with dimensions of 200×100×2000 mm under concentric compression loadings were part of the research program. The type of reinforcing materials, the volume fraction of reinforcement, the number of mesh layers, and the number of stirrups are the major parameters that change. The main goal is to understand the impact of using new appealing materials in reinforcing RC beams with openings. Using ANSYS-16.0 Software, nonlinear finite element analysis (NLFEA) was used to demonstrate the behavior of composite RC beams with openings. A parametric study is also conducted to discuss the variables that can have the greatest impact on the mechanical behavior of the proposed model, such as the number of openings. The obtained experimental and numerical results demonstrated the FE simulations' acceptable accuracy in estimating experimental values. Furthermore, demonstrating that the strength gained of specimens reinforced with fiber glass meshes was reduced by approximately 38% when compared to specimens reinforced with expanded or welded steel meshes is significant. In addition, when compared to welded steel meshes, using expanded steel meshes in reinforcing RC beams with openings results in a 16 percent increase in strength. In general, when ferrocement beams with openings are tested under concentric loadings, they show higher-level ultimate loads and energy-absorbing capacity than traditional RC beams.

Sound transmission of lightweight block walls and panels-Theory and Experiments

  • S Kandaswamy;A Ramachandraiah
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.235-239
    • /
    • 2004
  • Sound transmission either as airborne or structure borne is a potential problem that occurs in buildings either from sources within or from outside. With the expansion of real estate activities in countries like India, the need to attend sound insulation requirements also assumes greater dimensions. The focus of this research is on studying the sound transmission characteristics of building structures made of hollow blocks, neocrete block, aerocon block and prefabricated panels such as Ferrocement panel. The tests were carried out the blocks with and without plastering and their sound reduction index was measured at one-third octave frequencies. In the case of ferrocement panels, different types of systems were tested in the TL suite. Panels with cavity, with cavity ties, with insulation, with stiffeners and with plasterboard were investigated. Sound reduction index of these panels was measured with additional quantities like longitudinal wavespeed, and loss factors (internal and total loss factor). Tests were also conducted on Cypcrete wall panel and Sandwiched wooden panel in a similar way. Theoretical investigations were carried out using Statistical Energy Analysis (SEA) for the above systems. Sound reduction index was then compared between the predicted and the measured values.

  • PDF

Experimental and FE simulations of ferrocement columns incorporating composite materials

  • Shaheen, Yousry B.I.;Mahmoud, Ashraf M.;Refat, Hala M.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.155-171
    • /
    • 2017
  • This paper presents a proposed method for producing reinforced composite concrete columns reinforced with various types of metallic and non metallic mesh reinforcement. The experimental program includes casting and testing of twelve square columns having the dimensions of $100mm{\times}100mm{\times}1000mm$ under concentric compression loadings. The test samples comprise all designation specimens to make comparative study between conventionally reinforced concrete column and concrete columns reinforced with welded steel mesh, expanded steel mesh, fiber glass mesh and tensar mesh. The main variables are the type of innovative reinforcing materials, metallic or non metallic, the number of layers and volume fraction of reinforcement. The main objective is to evaluate the effectiveness of employing the new innovative materials in reinforcing the composite concrete columns. The results of an experimental investigation to examine the effectiveness of these produced columns are reported and discussed including strength, deformation, cracking, and ductility properties. Non-linear finite element analysis; (NLFEA) was carried out to simulate the behavior of the reinforced concrete composite columns. The numerical model could agree the behavior level of the test results. ANSYS-10.0 Software. Also, parametric study is presented to look at the variables that can mainly affect the mechanical behaviors of the model such as the change of column dimensions. The results proved that new reinforced concrete columns can be developed with high strength, crack resistance, and high ductility properties using the innovative composite materials.

Experimental Study on Flexural Capacity of Precast Steel Mesh Reinforced Mortar Panel (프리캐스트 스틸메쉬 보강 모르타르 패널의 휨 성능에 대한 실험적 연구)

  • Yi, Na Hyun;Kim, Jang Ho Jay;Lee, Sang Won;Kim, Tae Gyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.10-19
    • /
    • 2013
  • Recently, researches related to precast modular construction have been actively conducted for nuclear power plant, LNG gas tank, and small-medium PCCV as well as bridges and buildings. In this study, the precast panel cast with steel mesh reinforced mortar (SRM) which is similar reinforced ferrocement was developed for efficient precast construction, construction time reduction, and easy transportation. Mortar mixture with high strength and flowability was obtained from various case studies using silica fume and GGBS. Also, $1,200{\times}600{\times}150mm$ SRM and reinforced concrete (RC) panels were manufactured with reinforcing ratio of 2% and 4%. To verify structural performance of the SRM specimen, the basic material tests, free shrinkage test, and 3-point flexural test with a line loading were carried out. From the test results, it was determined that SRM specimens showed outstanding flexural capacity and ductility. However, the 4% reinforced SRM specimens must consider shear reinforcing to be used as a precast modular member.