• 제목/요약/키워드: Ferrite-martensite structure

Search Result 48, Processing Time 0.026 seconds

ECAP가공에 의한 초미세립 소재의 기계적 물성 (Mechanical Properties of Ultrafine Grained Materials via Equal-Channel Angular Pressing)

  • 고영건;김우겸;안정용;박경태;이종수;신동혁
    • 소성∙가공
    • /
    • 제15권2호
    • /
    • pp.105-111
    • /
    • 2006
  • A study was made to investigate the microstructure and the mechanical properties of low-carbon steel, Al-Mg alloy and Ti-6Al-4V alloy each representing bcc, fcc and hcp crystal structures, respectively fabricated by equal-channel angular(ECA) pressing. After a series of ECA pressings was performed, most grains were significantly refined below ${\mu}m$ in diameter with high mis-orientation of grain boundaries irrespective of different crystal structure used. Regarding the strain hardening capability, tensile tests of ultrafine grain (UFG) dual-phase (ferrite/martensite) steel which was different from UFG ferrite-pearlite steel were carried out at ambient temperature, and corresponding mechanical properties were discussed in relation to modified C-J analysis. Low-temperature and/or high strain-rate superplasticity of the UFG Al-Mg alloy and UFG Ti-6Al-4V alloy were also studied. Based on the analysis used in this study, it was concluded that UFG alloys exhibited the enhanced mechanical properties as compared to coarse-grained (CG) counterparts.

자동차용 브레이크 로터의 재료로 사용되는 회주철의 미세구조에 따른 마찰특성에 관한 연구 (Effect of the Microstructure of Gray Cast Iron Disk on Friction Characteristics)

  • 조민형;장호
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제29회 춘계학술대회
    • /
    • pp.240-246
    • /
    • 1999
  • The effect of microstructure of gray cast iron disk was investigated by using a pad-on-disk type friction tester. Three different rotors with different microstructures were studied in this work. They showed a pearlitic matrix, a ferritic matrix, and a martensitic structure, respectively. All of them have graphite flakes in common. Drag tests at different pressure and speed conditions were carried out to study friction stability, temperature rise during drags. The rotor containing pearlitic matrix showed lower values of friction coefficient, small amount of temperature rise, and less fading. The results showed that gray cast iron disk containing pearlitic matrix has good friction characteristics.

  • PDF

균질화, 열간단조, 어닐링 조건이 개량된 STD61 열간 금형강의 미세조직과 경도에 미치는 영향 (The Effects of Homogenization, Hot-Forging, and Annealing Condition on Microstructure and Hardness of a Modified STD61 Hot-Work Tool Steel)

  • 박규진;강민우;정재길;이영국;김병훈
    • 열처리공학회지
    • /
    • 제26권2호
    • /
    • pp.72-79
    • /
    • 2013
  • The effects of homogenization, hot-forging, and annealing condition on microstructure and hardness of a modified STD61 hot-work tool steel were investigated. The ingot specimen had a dendritic structure consisting of bainite and martensite. Spherical VC particles of approximately 50 nm and cuboidal (V,Ti)C particles of about 100 nm were observed in the ingot specimen. After homogenization, the dendritic structure was blurred, and the difference in hardness between martensite and bainite became narrow, resulting in the more homogeneous microstructure. Needle-shaped non-equilibrium $(Fe,Cr)_3C$ particles were additionally observed in the homogenized specimen. The hot-forged specimen had bainite single phase with spherical VC, cuboidal (V,Ti)C, and needle-shaped $(Fe,Cr)_3C$ particles. After annealing at $860^{\circ}C$, the microstructures of specimens were ferrite single phase with various carbides such as VC, $(Fe,Cr)_7C_3$, and $(Fe,Cr)_{23}C_6$ because of relatively slow cooling rates. The size of carbides in annealed specimens decreased with increasing cooling rate, resulting in the increase of hardness.

방전플라즈마 소결법에 의해 제조된 Fe-Ni 합금의 미세조직 및 고온산화특성 (Microstructure and High Temperature Oxidation Behaviors of Fe-Ni Alloys by Spark Plasma Sintering)

  • 임채홍;박종석;양상선;윤중열;이진규
    • 한국분말재료학회지
    • /
    • 제24권1호
    • /
    • pp.53-57
    • /
    • 2017
  • In this study, we report the microstructure and the high-temperature oxidation behavior of Fe-Ni alloys by spark plasma sintering. Structural characterization is performed by scanning electron microscopy and X-ray diffraction. The oxidation behavior of Fe-Ni alloys is studied by means of a high-temperature oxidation test at $1000^{\circ}C$ in air. The effect of Ni content of Fe-Ni alloys on the microstructure and on the oxidation characteristics is investigated in detail. In the case of Fe-2Ni and Fe-5Ni alloys, the microstructure is a ferrite (${\alpha}$) phase with body centered cubic (BCC) structure, and the microstructure of Fe-10Ni and Fe-20Ni alloys is considered to be a massive martensite (${\alpha}^{\prime}$) phase with the same BCC structure as that of the ferrite phase. As the Ni content increases, the micro-Vickers hardness of the alloys also increases. It can also be seen that the oxidation resistance is improved by decreasing the thickness of the oxide film.

RF플라즈마에 의한 마르텐사이트 스테인레스강의 질화에 관한 연구 (Martensitic Stainless Steel Nitrided in a Low-Pressure rf Plasma)

  • J.S. Yoo;S.K. Kim
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2001년도 추계학술발표회 초록집
    • /
    • pp.69-69
    • /
    • 2001
  • We report a study of the nitriding of the martensitic grade of stainless steel AKSK 420 in a low-pressure rl discharge using pure nitrogen. Much studied samples of the austenitic grade AISI 304 were treated at the same time to provide a comparison. With a treatment time of 4.0 h at $400^{\circ}C$, the nitrogen-rich layer on MSK 420 is 20pm thick and has a hardness about 4.3 times higher than that of the untreated material. The layer thickness is much greater than that obtained on AISI 304 under identical treatment conditions, reflecting the different Cr content of the two alloys. The alloy AlISI 420 is more susceptible than AISI 304 to the formation of CrN and ferrite, and this has a deleterious effect on the hardnes, gain. Below the temperature at which CrN forms, the treated layer retains its martensitic structure, but with a larger lattice parameter than the bulk, a phase that we term expanded martensite, by analogy with the situation with austenitic stainless steel. The fact that the treated layer retains a martensitic structure is interesting in view of previous evidence that nitrogen is an austenite stabilizer.

  • PDF

배관 강재 API 5L X65의 중심편석 (Centerline Segregation of Pipe Plate made of API 5L X65 Steel)

  • 최병학;이상우;김우식;김철만
    • 한국가스학회지
    • /
    • 제24권5호
    • /
    • pp.39-46
    • /
    • 2020
  • 본 논문에서는 파이프라인에서 사용되는 API 5L 철강의 중심선 편석에 대해 다루고자 한다. Mn/S와 Nb 그리고 C는 파이프 두께 방향으로의 중심선에서 편석되는 요소로 알려져 있다. Mn은 일반적으로 긴 점성상을 이루는 S를 동반한다. 중심선의 미세조직은 MnS와 산소를 포함한 Nb/Ti로 구성되어 있는데 이 중심선 지역의 편석효과를 OM, SEM/EDS 및 마이크로비커스 경도기로 분석하였다. Mn, Nb 및 C는 오스테나이트가 페라이트 또는 마르텐사이트로 변태하는 것을 억제시키는 원소이다. 이러한 원소들은 마르텐사이트의 한 종류인 베이나이트 미세조직을 만들 수 있는데 이는 용융 및 열처리에서 얻어지는 중심선과 매트릭스 간의 원소 편석과는 다르다.

2단열처리를 이용한 고연신율 고장력 강판의 개발 (Development of the high elonagation and high strength steel sheets utilizing two step heat treatment)

  • 김용현;김영훈;김한군
    • 열처리공학회지
    • /
    • 제10권1호
    • /
    • pp.1-9
    • /
    • 1997
  • The variation of the mechanical properties and the formation of retained austenite with heat treatment conditions in austempered Si bearing carbon steels has been investigated. In the case of a steel containing 0.35C-1.48Si-0.95Mn, it has been found that a feather shape bainite structure of lath are obtained under a isothermal treated condition at just below the Ms temperature, and the martensite, bainitic ferrite and retained austenite of second phase particles on the ferrite matrix for a isothermal treated steels after intercritical annealing are precipitated in a linked shape. The retained austenite with $2{\mu}m$ size induced as TRIP is found to increase with increasing the formation rate of retained austenite for the intercritical annealing and high Si containing steels. The tensile strength is increased as austempering temperature increases in all isothermal treatment temperature, whereas the elongation is shown to roughly decrease as the tensile strength increases. The values of tensile strength-elongation balance have showed a marked dependence upon the elongation rather than the tensile stregth, and their values are increased for high Si containing steels and intercritical annealing condition. The most optimum result has been shown to be the tensile stregth-elongation balance of $2882.4kgf/mm^2.%$ and the elongation of 33.3% for a "B" steel in the heat treating temperature range of $780{\sim}370^{\circ}C$.

  • PDF

저탄소 보론강의 경화능에 미치는 W 첨가의 영향 (Effect of W Addition on the Hardenability of Low-Carbon Boron Steels)

  • 황병철
    • 한국재료학회지
    • /
    • 제24권9호
    • /
    • pp.488-494
    • /
    • 2014
  • The effect of tungsten (W) addition on the hardenability of low-carbon boron steels was investigated using dilatometry, microstructural observations and secondary ion mass spectroscopy. The hardenability was discussed with respect to transformation behaviour aspects depending on the segregation and precipitation of boron at austenite grain boundaries. A critical cooling rate producing a hardness corresponding to 90 % martensite structure was measured from a hardness distribution plot, and was used as a criterion to estimate hardenability at faster cooling rates. In the low-carbon boron steel, the addition of 0.50 wt.% W was comparable to that of 0.20 wt.% molybdenum in terms of critical cooling rate, indicating hardenability at faster cooling rates. However, the addition of 0.50 wt.% W was not more effective than the addition of .0.20 wt.% molybdenum at slower cooling rates. The addition of 0.20 wt.% molybdenum completely suppressed the formation of eutectoid ferrite even at the slow cooling rate of $0.2^{\circ}C/s$, while the addition of 0.50 wt.% W did not, even at the cooling rate of $1.0^{\circ}C/s$. Therefore, it was found that the effect of alloying elements on the hardenability of low-carbon boron steels can be differently evaluated according to cooling rate.

높은 변형능을 갖는 저탄소 베이나이트계 고강도강의 미세조직과 기계적 특성 (Microstructure and Mechanical Properties of High-Strength Low-Carbon Bainitic Steels with Enhanced Deformability)

  • 황병철
    • 한국재료학회지
    • /
    • 제23권8호
    • /
    • pp.423-429
    • /
    • 2013
  • Recently, steel structures have increasingly been required to have sufficient deformability because they are subjected to progressive or abrupt displacement arising from structure loading itself, earthquake, and ground movement in their service environment. In this study, high-strength low-carbon bainitic steel specimens with enhanced deformability were fabricated by varying thermo-mechanical control process conditions consisting of controlled rolling and accelerated cooling, and then tensile and Charpy V-notch impact tests were conducted to investigate the correlation between microstructure and mechanical properties such as strength, deformability, and low-temperature toughness. Low-temperature transformation phases, i.e. granular bainite (GB), degenerate upper bainite(DUB), lower bainite(LB) and lath martensite(LM), together with fine polygonal ferrite(PF) were well developed, and the microstructural evolution was more critically affected by start and finish cooling temperatures than by finish rolling temperature. The steel specimens start-cooled at higher temperature had the best combination of strength and deformability because of the appropriate mixture of fine PF and low-temperature transformation phases such as GB, DUB, and LB/LM. On the other hand, the steel specimens start-cooled at lower temperature and finish-cooled at higher temperature exhibited a good low-temperature toughness because the interphase boundaries between the low-temperature transformation phases and/or PF act as beneficial barriers to cleavage crack propagation.

ADINA & WINLIFE 활용한 압력용기 용접부 피로파괴 해석 (Effect of Weld Elastic Modulus on Simulation of Stress Concentration and Fatigue Life for Boiler Vessel)

  • 최병학;이범규;심종헌;박찬성;김진표;박남규
    • Journal of Welding and Joining
    • /
    • 제34권5호
    • /
    • pp.47-53
    • /
    • 2016
  • The aim of this study is to consider effect of weld elastic modulus on simulations of stress concentration and fatigue life for pressure vessel. The investigations include analysis with ADINA and WINLIFE softwares for whole body model about using condition of the boiler vessel. Values of weld elastic modulus were divided by 5 steps in butt weld area of the boiler vessel body. The stress concentration of the butt weld more was increased in case of higher elastic modulus of weld area because of higher difference of material properties between matrix and weld. It was concluded that the fatigue lives were decreased along increasing stress concentration due to high elastic modulus of weld. The matrix microstructure was estimated as pearlitic structure of ${\alpha}$ ferrite and pearlite. And the microstructures of welds along 5 steps of elastic modulus were estimated as bainitic fine pearlite and martensite as increasing elastic modulus.