• 제목/요약/키워드: Ferrite/pearlite

검색결과 165건 처리시간 0.022초

미세합금강의 조직이 항복강도와 충격치에 미치는 영향 (The Effect of Microstructures on Yield Strength and Impact Properties of a Microalloyed Steel)

  • 조종춘
    • 한국기계연구소 소보
    • /
    • 통권16호
    • /
    • pp.29-39
    • /
    • 1986
  • Several heat treatment were applied to on HSLA steel of type StE47 (German standard) to produce five ferrite microstructures of different strength and at least two different grain sizes respectively. Whereas the ferrite microstructure had a strong influence on yield strength the effect of grain size was negligible. The different strength levels could be explained by regarding the arrangement of dislocations and vanadium carbide particles, and their mutual interaction. Specimens tranformed at $600^{\circ}C$ showed the highest strength levels. In this case precipitation has occured after the $\gamma$- $\alpha$ transformation. Very small VC particles are arranged mostly along dislocation lines. Increasing both, grain size and pearlite volume fraction leads to a remarkable shift of transition temperature which was further enhanced by increasing ferrite strength.

  • PDF

3상(相) 혼합조직(混合組織) 구상흑연주철(球牀黑鉛鑄鐵)의 강인화(强引化)에 미치는 특수열처리(特殊熱處理)의 영향(影響)에 관(關)한 연구(硏究) (Effect of Special the Heat Treatment on the Strength and Toughness in a Multi-phase(Ferrite-Bainite-Martensite) Ductile Cast Iron)

  • 최현수;김석원
    • 한국주조공학회지
    • /
    • 제9권6호
    • /
    • pp.463-473
    • /
    • 1989
  • This study is aimed to investigate the effect of cyclic heat treatment which is special heat treatment on the strength and toughness in Multi-phase(Ferrite-Bainite-Martensite) Ductile cast Irons. Spceimens were austenitized at eutectoid transformation temperature range(${\alpha}+{\gamma}$) for 30min and austempered at $300^{\circ}C$ and $400^{\circ}C$ for different holding times, and then quenched in ice water to obtain the multi-phase(Ferrite-Bainite-Martensite) structure from various prior structures, which was obtained by various cyclic heat treatments. As the number of cycle in cyclic heat treatment increased, volume fraction of pearlite increased and the its morphology was refined. As the number of cycle in cyclic heat treatment increased, the multi-phase(Ferrite-Bainite-Martensite) was dispersed in whole matrix as refined island phase. Particularly, martensite among the multi-phase gradually became a spherical shape. Good combination in impact energy and tensile strength was detained in $840^{\circ}C-300^{\circ}C-15min$ condition after 10 cycles in cyclic heat treatment, and its multi-phase volume fraction is Ferrite(50%)-Martensite(l3%)-Bainite(37%).

  • PDF

보자력 측정에 의한 아공석강 및 공석강의 열처리에 따른 미세조직 평가 (Characterization of Microstructures of Variously Heat Treated Hypoeutectoid and Eutectoid Steel by Magnetic Coercivity Measurement)

  • 변재원;김정석;권숙인
    • 한국재료학회지
    • /
    • 제14권8호
    • /
    • pp.565-572
    • /
    • 2004
  • The microstructures of variously heat treated hypoeutectoid($0.45\%$ carbon) and eutectoid($0.85\%$ carbon) steel were characterized by magnetic coercivity measurement. The effect of spheroidization of cementites on the coercivity was investigated for $0.45\%$ carbon steel. In case of $0.85\%$ carbon steel, microstructural parameters such as prior austenite grain size, phase and pearlite interlamellar spacing were measured along with coercivity to investigate the relationships between them. Prior austenite grain size had little effect on the measured coercivity. Coercivity was observed to be high in order of martensite, pearlite and ferrite phases. The linear decrease of coercivity with increasing pearlite interlamellar spacing was found. The effect of each microstructural factor on the coercivity and the potential of coercivity as a nondestructive evaluation parameter for assessing microstructures of steel products are discussed.

펄라이트 함유강에서 연성에 영향을 미치는 미세조직 인자 (Microstructural Factors on Ductility in Steels containing Pearlite)

  • 심혜정;송형락;남원종
    • 소성∙가공
    • /
    • 제13권5호
    • /
    • pp.415-421
    • /
    • 2004
  • The effect of transformation temperature on microstructural features and their effects on ductility in 0.55%C steels were investigated, compared with in 0.82%C eutectoid steel. The samples were austenitized at 100$0^{\circ}C$ for 30min. followed by quenching in a salt bath in the temperature range of 500 ~ $620^{\circ}C$. It was found that reduction of area(RA) increased with increasing transformation temperature and then, decreased after reaching its maximum value in steels containing pro-eutectoid ferrite less than 6%. The thickness of lamellar cementite was found to be the main factor controlling RA. Additionally, the presence of cementite thickness for the maximum ductility in all the tested steels was observed as about 0.015${\mu}{\textrm}{m}$ for tested steels.

구상흑연 주철재의 피로크랙 발생 및 피로강도에 미치는 기지조직의 영향 (Effect of a Matrix Structure on the Initiation of Fatigue Crack and Fatigue Strength in Nodular Graphite Cast Iron)

  • 윤명진;이경모
    • 한국생산제조학회지
    • /
    • 제7권5호
    • /
    • pp.66-71
    • /
    • 1998
  • It is required the superior materials for the parts of machines or structures, which could be endurable in severe load and environment. According to advancement of casting technology, nodular graphite cast iron is used as suitable for such condition. But nodular graphite cast iron is scattering of fatigue strength and low reliability. Therefore in this study, the effect of matrix structure and number of nodular graphite on the initiation of fatigue crack and fatigue strength. It was found that the material which has relatively high ferrite volume fraction was more easily cracked than other materials and fatigue limit was low. The material which has not found pinhole on the surface, the crack was initiated in graphite went through ferrite and propagated into through graphite, but separated graphite and ferrite grain boundary and combined with other cracks to fro large one.

  • PDF

복합조직의 파괴거동과 파괴혁성에 관한 연구 I

  • 송삼홍;김규생
    • 대한기계학회논문집
    • /
    • 제5권2호
    • /
    • pp.110-121
    • /
    • 1981
  • In order to study on the fracture behavior and the fracture thoughness of combined structure, the specimens, structural steel (SM28C) and 6:4 brass are annealed for ductility and investigated for the befavior of fracture and the absorbed energy at the variation of the impact velocity. The results obtained by this study are as follows: (1)The maximum load increases with the impact velocity, but in the condition of constant impact velocity it decreases as the ductility increases. (2)The absorbed energy increases with the impact velocity, but in the condition of constant impact velocity it is constant as the ductility increases. (3)In the case of the combined structure of peralite and ferrite, the microcracks initiates and propagates mainly in the ferrite structure intergranular in accompany with the slip, and the slip concentration phenomena occur in the boundary of pearlite structure However, in case of the combined structure of .alpha. and ..betha. phase, the microcracks initiates and propagares mainly in the .alpha. phase intergranularly, and slip concentration phenomena not ocur in the boundary of .betha. phase.

ECAP 강소성 가공에 의한 구조재료 초미세립화 (Fabrication of Ultrafine Grained Structure Materials by Equal Channel Angular Pressing)

  • 김우겸;안정용;신동혁;박경태;고영건;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.126-129
    • /
    • 2005
  • Microstructures and tensile properties of low carbon steels, 5083 Al alloy and Ti-6Al-4V alloy fabricated by equal channel angular pressing (ECAP) were examined in order to understand their deformation response associated with a formation of an ultrafine grained (UFG) structure. Room temperature tensile properties of UFG low carbon ferrite/pearlite steels and UFG ferrite/martensite dual phase steel were compared for exploring a feasibility enhancing the strain hardening capability of UFG materials. In addition, low temperature and high strain rate superplasticity of the two grades of the UFG 5083 Al alloy, and Ti-6Al-4V alloy were presented. From the analysis of a series of experiments, it was found that UFG materials exhibited the enhanced mechanical properties compared to coarse grained counterparts.

  • PDF

저탄소${\cdot}$저합금 강의 연속 냉각 변태에 미치는 Ni의 영향 (Effects of Ni addition on continuous cooling transformation behavior of low carbon HSLA steels)

  • 강주석;전현조;박찬경
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.456-459
    • /
    • 2005
  • Continuous cooling transformation behaviors were studied fur low carbon HSLA steels containing three different level $(1\~3\;wt\%)$ of Ni addition. Thermo-mechanical processing (TMP) simulations to construct continuous cooling (CCT) diagram were conducted by using Gleeble system. As cooling rate increased, pearlite, granular bainite, acicular ferrite, bainitic ferrite and lath martensite were transformed from deformed austenite. Fully bainitic microstructure were developed at all cooling rate condition in high Ni containing steel due to hardenability increasing effects of Ni. Ni also influenced the transformation kinetics. At the slowest cooling rate of $0.3^{\circ}C/s$, transformation delayed with decreasing Ni contents because of the diffusion of substitutional alloy elements. However, cooling rate slightly increased to $1^{\circ}C/s$, transformation kinetics accelerated with decreasing Ni contents because nucleation of bainite was sluggish due to hardening of residual austenite.

  • PDF

오스테나이트 결정립 크기를 고려한 CGHAZ에서의 상변태 거동 예측 (Modeling of PhaseTransformation Kinetics in the CGHAZ Considering Prior Austenite Grain Size)

  • 이찬우;엄상호;이경종;이창희
    • Journal of Welding and Joining
    • /
    • 제18권5호
    • /
    • pp.55-62
    • /
    • 2000
  • A metallurgical model for the phase transformation kinetics at Coarsened Grain Heat Affected Zone(CGHAZ) on the basis of Johnson-Mehl-Avrami equation(JMA equation) was proposed. In this model, the effect of prior austenite grain size on the transformation and the morphological changes of ferrite were considered. Isothermal dilatometer tests were performed to determine the effect of prior austenite grain size (AGS) on the austenite decomposition to ferrite and pearlite in a plain carbon steel. By comparing the calculated volume fraction with measured data, the reliability of the developed model was discussed.

  • PDF

저탄소강에서 Planetary 볼밀링에 의한 나노결정 페라이트의 형성 (Formation of Nanocrystalline Ferrite by Planetary Ball Milling in a Low Carbon Steel)

  • 이혜정;이상우;오명훈
    • 열처리공학회지
    • /
    • 제18권1호
    • /
    • pp.29-40
    • /
    • 2005
  • Formation of nanocrystalline ferrite was investigated using milled powders obtained by planetary ball milling of chips, which were made by high speed mechanical cutting of a low carbon steel(0.15%C-1.1%Mn-0.01%Ti). After 4 hour milling the chips were changed to powders of $50{\mu}m$ in average size, and with increasing milling time the powders were refined to about $3{\mu}m$ for 128 hour and showed more equiaxed shapes. Nanocrystalline(nc) region appeared in the surfaces of powders milled for 1 hour, and the 4 hour milled powders were almost filled with nc region. Hardness of nc region was much higher than that of work-hardened(WH) region. With increasing milling time, ferrite and cementite in pearlite were severely deformed and lamellar spacing was decreased, and then cementites began to disappear after 4 hour milling due to dissolution into ferrite. Deformation bands formed in lightly work-hardened region showed large width and similar crystallographic orientations. Spacing of deformation bands was decreased with deformation and the layered microstructure consisting of narrow deformation bands subdivided into variously oriented small grains was formed by more deformation, and eventually this structure seemed to be evolved to the nc structure by further deformation. It is also conjectured the growth of nc ferrite grains occurred through the coalescence of nanocrystalline ferrites rather than the nucleation and growth of recrystallized grains.