• 제목/요약/키워드: Ferric iron

검색결과 187건 처리시간 0.023초

Effect of trace amount of ferrous and ferric ions on the dissolution of iron plate in magnetically treated 3% sodium chloride solution

  • Chiba, Atsushi;Ohki, Tomohiro;Wu, Wen-Chang
    • Corrosion Science and Technology
    • /
    • 제4권2호
    • /
    • pp.45-50
    • /
    • 2005
  • A 3% NaCl solution of 1 $dm^3$ circulated with 1.5 $dm^3/min$ by a pump for 24 h in the presence of magnetic field. An iron plate immersed in a $100cm^3$ of test solution for 24 h. The rest potential and pH on surface fixed after 3 h. Containing 0~120 ppm of Fe(II) ion, the dissolution in the magnetically treated solution rose comparing with that in the non-magnetically treated solution. The dissolution amount reached to maximum at 50 ppm, then fixed in the non-magnetically treated solution. When Fe(II) ion existed in the magnetically treated solution, dissolution accelerated a little. In the non-magnetic treated solution containing 10~125 ppm of Fe(III) ion existed, the dissolution accelerated. The dissolution amounts reached to maximum at 50 ppm, then decreased from maximum value. In the magnetically treated solution, the dissolution amounts reached to minimum until 50 ppm, then increased from minimum value. The dissolution amounts affected larger with increasing of magnetic flux density. Fe(II), Fe(III) ions and magnetic treatment affected to formation of $Fe(OH)_2$ and/or $Fe_3O_4$ films. The magnetically treated effects memorized about one month.

엣칭용 염화제2철 폐액중의 니켈제거 (Removal of Nickel from the Etching Waste Solution of Ferric Chloride)

  • 도용일;정우원;이만호
    • 공업화학
    • /
    • 제7권4호
    • /
    • pp.614-622
    • /
    • 1996
  • 엣칭용 염화제2철 용액중의 효과적인 니켈제거에 관해 연구하였다. 전해철괴 또는 폐새도우마스크 철편을 사용하여 염화제2철을 염화제1철로 환원시킨후 용액중의 $Ni^{2+}$를 전해철 분말로 환원 석출시켰다. 최적의 실험조건하에서 초기 니켈의 농도가 1.0%일 때 니켈제거율은 99%이었고 초기 니켈의 농도가 0.1%일 때 니켈제거율은 98%이었다. 염화제2철의 환원반응 중에 생성된 수산화철의 종류 및 입자크기를 XRD와 SEM으로 분석하였다.

  • PDF

Direct and Indirect Reduction of Cr(VI) by Fermentative Fe(III)-Reducing Cellulomonas sp. Strain Cellu-2a

  • Khanal, Anamika;Hur, Hor-Gil;Fredrickson, James K.;Lee, Ji-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권11호
    • /
    • pp.1519-1525
    • /
    • 2021
  • Hexavalent chromium (Cr(VI)) is recognized to be carcinogenic and toxic and registered as a contaminant in many drinking water regulations. It occurs naturally and is also produced by industrial processes. The reduction of Cr(VI) to Cr(III) has been a central topic for chromium remediation since Cr(III) is less toxic and less mobile. In this study, fermentative Fe(III)-reducing bacterial strains (Cellu-2a, Cellu-5a, and Cellu-5b) were isolated from a groundwater sample and were phylogenetically related to species of Cellulomonas by 16S rRNA gene analysis. One selected strain, Cellu-2a showed its capacity of reduction of both soluble iron (ferric citrate) and solid iron (hydrous ferric oxide, HFO), as well as aqueous Cr(VI). The strain Cellu-2a was able to reduce 15 μM Cr(VI) directly with glucose or sucrose as a sole carbon source under the anaerobic condition and indirectly with one of the substrates and HFO in the same incubations. The heterogeneous reduction of Cr(VI) by the surface-associated reduced iron from HFO by Cellu-2a likely assisted the Cr(VI) reduction. Fermentative features such as large-scale cell growth may impose advantages on the application of bacterial Cr(VI) reduction over anaerobic respiratory reduction.

훼리틴 생산 재조합 효모의 철분 결핍성 빈혈 개선 효과 (Repair of Iron Deficiency in Rats by the Intake of Recombinant Yeast Producing Human H-ferritin)

  • 황은희
    • 동아시아식생활학회지
    • /
    • 제16권1호
    • /
    • pp.93-98
    • /
    • 2006
  • This study examined whether or not the iron that is accumulated in the recombinant microbes that produce ferritin is bioavailable to rats with iron deficiency. Rats induced with iron deficiency were treated with iron preparations of $Fe(NH_4)_2(SO_4)_2$, horse spleen ferritin, control yeast, and ferritin-producing recombinant yeast for 14 days. The bioavailability of iron was examined by measuring hemoglobin concentration, hematocrit value, and tissue iron stores. Differences between dietary groups were determined by one-way ANOVA, at the level of significance p<0.05. Based on hemoglobin concentration and hematocrit value, iron in $Fe(NH_4)_2(SO_4)_2$, horse spleen ferritin, and ferritin-producing yeast were bioavailable in rats and cured iron deficiency. The efficacy of ferritin and ferritin-producing yeast was confirmed in establishing tissue iron stores after the induction of iron deficiency. The iron sources of ferritin and the ferritin-producing yeast seemed to be as effective for the recovery from iron deficiency as the iron compounds of ferric citrate and ferrous ammonium sulfate. The results suggest that the iron stored in ferritin of the recombinant yeast is bioavailable, and that the recombinant yeast may contribute widely as a source of iron to resolve the global problem of iron deficiency.

  • PDF

Fe3O4 생성에 미치는 황산제일철/황산제이철 몰비의 영향 (Effect on the Formation of Fe3O4 with Ferrous Sulfate/Ferric Sulfate Molar Ratio)

  • 엄태형;;김삼중;안석진;오경환;서동수
    • 한국재료학회지
    • /
    • 제21권4호
    • /
    • pp.225-231
    • /
    • 2011
  • The effect of ferrous/ferric molar ratio on the formation of nano-sized magnetite particles was investigated by a co-precipitation method. Ferrous sulfate and ferric sulfate were used as iron sources and sodium hydroxide was used as a precipitant. In this experiment, the variables were the ferrous/ferric molar ratio (1.0, 1.25, 2.5 and 5.0) and the equivalent ratio (0.10, 0.25, 0.50, 0.75, 1.0, 2.0 and 3.0), while the reaction temperature ($25^{\circ}C$) and reaction time (30 min.) were fixed. Argon gas was flowed during the reactions to prevent the $Fe^{2+}$ from oxidizing in the air. Single-phase magnetite was synthesized when the equivalent ratio was above 2.0 with the ferrous/ferric molar ratios. However, goethite and magnetite were synthesized when the equivalent ratio was 1.0. The crystallinity of magnetite increased as the equivalent ratio increased up to 3.0. The crystallite size (5.6 to 11.6 nm), median particle size (15.4 to 19.5 nm), and saturation magnetization (43 to 71 $emu.g^{-1}$) changed depending on the ferrous/ferric molar ratio. The highest saturation magnetization (71 $emu.g^{-1}$) was obtained when the equivalent ratio was 3.0 and the ferrous/ferric molar ratio was 2.5.

Ferric Sulfate를 이용한 유치의 치수절단술 (PRIMANY TOOTH PULPOTOMY USING FERRIC SULFATE)

  • 이상헌;이미나;이상훈
    • 대한소아치과학회지
    • /
    • 제25권4호
    • /
    • pp.843-848
    • /
    • 1998
  • Pulpotomy is a frequently used treatment modality in primary teeth. It is method by which infected coronal pulp is removed while retaining vital radicular pulp. Since its introduction in 1930 by Sweet formocresol remains the most popular medicament for this treatment. However, despite its outstanding bactericidal properties, formocresol is known to cause adverse tissue reactions. Theoretically, formocresol disinfects and fixes radicular pulp and thus prevents infection and internal resorption. In reality, however, it leads to chronic inflammation and is sometimes responsible for failures through abscess formation and internal root resorption. Also, Myers et al., in 1978, reported on the systemic distribution of FC and other studies have followed with reports of its immunological, mutagenic and carcinogenic effects. Much effort has, therefore, focused on the development of alternative medicaments and techniques. Since its introduction in 19C, ferric sulfate proven itself as an effective hemostatic agent and is used as an astringent in dentistry. In 1988, Landau and Johnsen suggested ferric sulfate be used as a medicament in pulpotomy and many studies have focused on it to overcome the toxic effects of FC. Ferric sulfate acts through its ferric ion and iron ion, which react with blood protein leading to aggregation. The aggregated protein acts to plug the blood vessels, causing mechanical hemostasis. As blood clot formation is minimal, there is reduced inflammation of radicular pulp and enhanced healing. There are no reports regarding its systemic distribution. This is a report of cases treated by the author using pulpotomy with ferric sulfate.

  • PDF

이온교환수지에 의한 철의 선택적 분리 및 정량 (Selective Separation and Determination of Iron with Ion-Exchange Resins)

  • 정용순;김동원;김성호;이대운
    • 대한화학회지
    • /
    • 제31권1호
    • /
    • pp.45-54
    • /
    • 1987
  • Calcon carboxylic acid[2-hydroxy-1-(2-hydroxy-4-sulfo-1-naphthylazo)-3-naphthoic acid;CCA)]를 이온교환시킨 Dowex 1-X8수지(CCA-Dowex 1-X8)와 2-methyl-8-hydroxyquinoline(MHQ)을 침윤시킨 Amberlite XAD-4 수지(MHQ-XAD-4)를 여러가지 매질중에 있는 철(Ⅲ)이온의 분리-농축에 사용하였다. 이들 수지의 안정성을 검토하고 철(Ⅲ)이온에 대한 흡착능을 측정하였다. 매트릭수의 주성분인 Al(Ⅲ), Ca(Ⅱ), 및 Fe(Ⅲ)들의 수지에 대한 흡착성을 pH를 변화시키며 조사하여 최적 pH범위를 결정하였다. 용리법으로 알루미늄호일과 초정약수중 미량의 철분을 매트릭스 이온으로부터 분리-농축하였다. 농축된 Fe(Ⅲ)는 소량의 강산으로 용리시켜 불꽃 원자흡광광도법으로 정량하였다. 초정약수중의 Fe(Ⅱ)와 Fe(Ⅲ) 이온들은 SP-Sephadex C-25컬럼으로 농축하고, ferrozine용액과 1% ascorbic acid-ferrozine용액으로 단계적 용리법에 의해 용리시킴으로써 각각을 분리할 수 있었다. 분리된 각 이온들은 Fe(Ⅲ)-ferrozine착물의 분석 파장인 562nm에서 분광 광도법으로 정량하였다.

  • PDF

버섯중 철이온에 활성화된 광감응성 Mitochondrial ATPase에 관한 연구 (Study on the Light-Induced Mitochondrial ATPase$(F_1-ATPase)$ Activated by Iron ion in Mushroom)

  • 민태진;이미애;박상신
    • 한국균학회지
    • /
    • 제21권3호
    • /
    • pp.157-164
    • /
    • 1993
  • 1. 표고버섯중 광감응성 mitochondrial $F_1-ATPase$$Fe^{3+},\;Fe^{2-}$$Mg^{2+}$ 이온에 의하여 각각 활성화 되었으나 5.0 mM $Fe^{3+}$ 이온에 의한 상대활성도는 대조구에 비하여 107% 증가시켰다. 2 $Mg^{2+}$ 존재하에서 $Fe^{3+}$$Fe^{2-}$ 각 이온 농도효과는 모두 효소의 활성을 증가시켰으나 0.1 mM $Mg^{2+}$과 5.0 mM $Fe^{3+}$ 이온의 공존하에서 170%를 증가시켜 $Mg^{2+}$ 이온에 의한 상승작용을 보였다. 3. 0.1 mM $Mg^{2+}$와 0.1 mM $Fe^{2+}$ 존재하에서 $Fe^{3+}$ 이온농도효과는 그 농도가 5.0 mM일 때 168%의 활성도 증가를 보여 $Fe^{2-}$ 이온공존효과는 없었다. 4. 이 효소는 $Mg^{2+}$$Fe^{3+}$ 이온에 의하여 활성화되는 특성을 가지고 있으며 활성금속이온 존재하에서 측정한 최적 pH 빛 온도는 각각 7.5 및 $66^{\circ}C$였다.

  • PDF

폐리튬인산철 양극재 분말과 염화철 에칭액과의 반응에 의한 리튬의 침출 및 회수에 대한 연구 (A Study on the Leaching and Recovery of Lithium by Reaction between Ferric Chloride Etching Solution and Waste Lithium Iron Phosphate Cathode Powder)

  • 김희선;김대원;채병만;이상우
    • 자원리싸이클링
    • /
    • 제32권3호
    • /
    • pp.9-17
    • /
    • 2023
  • 폐리튬인산철 전지의 양극재로부터 리튬을 효율적으로 회수하기 위하여 활발하게 연구 중이며, 이는 리튬 자원의 지역 편재성 및 가격 변동성을 해소하고 환경오염 문제를 해결할 수 있다. 폐리튬인산철 전지로부터 리튬을 침출 및 회수하기 위하여 동형치환 침출 공정을 사용하였다. 상대적으로 저렴한 염화철 에칭액을 침출제로 사용하여 LFP의 Fe2+를 동형 치환하여 리튬을 침출하였다. 또한 추가적인 첨가제 및 추출제 없이 염화철 에칭액만을 사용하였으며, 염화철 에칭액을 LFP 이론적 몰 비 대비 0.7배, 1.0배, 1.3배, 그리고 1.6배로 하여 리튬의 침출율을 비교하였다. LFP 몰 비 대비 1.3배의 조건에서 약 98%로 가장 높은 리튬 침출율을 보였고 이후 침출액은 NaOH를 투입하여 pH 조절을 통하여 철을 제거하였다. 철이 제거된 용액으로부터 탄산리튬을 합성하였고, 그 분말 특성을 확인하였다.

INITIATION OF LIPID PEROXIDATION AS A RESULT OF THE COMBINED ACTION OF FERRIC IRON AND LIGHT ON MEMBRANES

  • Park, Zee-Yong;Kim, Chang-Sook;Jung, Jin
    • Journal of Photoscience
    • /
    • 제1권2호
    • /
    • pp.83-88
    • /
    • 1994
  • The synergic effect of iron plus blue light on the peroxidation of membrane lipid was investigated, using liposomes made of phospholipid. While strong irradiation did not affect Fe$^{+2}$-promoted lipid peroxidation that turned out to be O$_2$-dependent, ferric iron in bright light exerted a pronounced effect on the initiation of lipid peroxidation: this combined action of light and Fe$^{+3}$ on liposomal membranes was apparently independent of O$_2$. When liposomal samples containing Fe$^{+3}$ were subjected to irradiation, some portions of Fe$^{+3}$ were converted into Fe$^{+2}$. The extent of the Fe$^{+3}$-Fe$^{+2}$ conversion increased with increasing time of irradiation, which resembled the dependence of Fe$^{+3}$-promoted lipid peroxidation on irradiation. Further, it was observed that the effect of irradiation in liposomal samples containing Fe$^{+2}$ was strikingly mimicked by that of Fe$^{+2}$ addition to the same samples. The obligatory requirement of a suitable Fe$^{+3}$/Fe$^{+2}$ ratio for the genesis of iron-dependent lipid peroxidation, a controversial proposition, was also confirmed by the observation that lipid peroxidation was substantially enhanced by the addition of a mixture of Fe$^{+3}$ and Fe$^{+2}$, as compared to the addition of Fe$^{+3}$ or Fe$^{+2}$ alone. The results obtained in this study not only suggest that light acts as an effector for initiating lipid peroxidation, when Fe$^{+3}$ is present in membrane systems, but also imply that any chemical or physical factor that influences the redox states of iron in membranes can play a role in lipid peroxidation reactions.

  • PDF