• Title/Summary/Keyword: Ferric Chloride($FeCl_3$)

Search Result 49, Processing Time 0.023 seconds

An Efficient Procedure for the Synthesis of Benzimidazoles Using H2O2/SiO2-FeCl3 System (H2O2/SiO2-FeCl3 계를 이용한 Benzimidazoles의 효율적인 합성)

  • Fazlinia, Abbas;Mosslemin, Mohammad Hossein;Sadoughi, Hesamaddin
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.5
    • /
    • pp.579-581
    • /
    • 2010
  • Solid silica supported ferric chloride ($SiO_2-FeCl_3$) catalyzed one-step synthesis of various benzimidazoles from o-phenylenediamine and aldehydes using $H_2O_2$ as the oxidant. The salient features of this method are simple and convenient procedure, easy purification and shorter reaction times.

Effect of Fe(ClO4)3 Addition in the Aqueous Ferric Chloride Etchant on the Increase of Shadow Mask Etch Rate (Fe(ClO4)3 첨가제의 주입에 의한 염화제이철 수용액의 Shadow Mask 에칭속도 향상 효과)

  • Kim, Young Wook;Park, Mooryong;Lee, Hyung Min;Park, Gwang Ho;Park, Chinho
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.157-163
    • /
    • 2010
  • A new etchant formulation was developed in this study to increase the shadow mask production rate, utilizing the $Fe(ClO_4)_3$ as an additive in the aqueous $FeCl_3$ solution. The shadow mask etch rate increased substantially with the increase of $Fe(ClO_4)_3$ concentration in the etchant. The etch rate difference between Ni and Invar steel was also reduced with the addition of $Fe{(ClO_4)_3}$ for most of the operating conditions, which was caused by the enhanced etch rate of both Ni and Fe by the new etchant. The increase in etch rate with the addition of $Fe(ClO_4)_3$ to aqueous ferric chloride solution was attributed to the superior electron transfer capability of $ClO^{4-}$ ion to that of $Cl^-$ ion.

Conversion of Red-macroalgae Eucheuma spinosum to Platform Chemicals Under Ferric Chloride-catalyzed Hydrothermal Reaction (Ferric chloride를 이용한 Eucheuma spinosum으로부터 플렛폼 케미컬의 생산)

  • Jeong, Gwi-Taek;Kim, Sung-Koo
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.293-300
    • /
    • 2020
  • Eucheuma spinosum, red macro-algae, contains carrageenan as the major polysaccharide and is commercially produced in Indonesia, Malaysia, Philippines, China and Tanzania. In this study, E. spinosum was converted to sugar and platform chemicals (5-HMF, levulinic acid, formic acid) via FeCl3-catalytic hydrothermal reaction. In addition, statistical methodology (3-level 3-factor Box-Behnken design) was applied to optimize and evaluate the effects of reaction factors (reaction temperature, catalyst concentration and reaction time). As a result of optimization, the concentration of 5-HMF was obtained to be 2.96 g/L at 160 ℃, 0.4 M FeCl3 and 10 min. Optimal conditions of levulinic and formic acids were determined at 200 ℃, 0.6 M FeCl3 and 30 min, and the concentrations were obtained to be 4.26 g/L and 3.77 g/L, respectively.

Ameliorative Effect of the Water Extract from Cirsium japonicum var. ussuriense Leaves on Blood Circulation in a Rat Model of Topical Ferric Chloride-Induced Carotid Artery Damage (Ferric Chloride로 유도된 렛트 경동맥 손상 및 혈전에 대한 수용성 엉겅퀴 잎 추출물의 혈행 개선 효과)

  • Kang, Hyun Ju;Kim, Hyeon Soo;Jeon, In Hwa;Mok, Ji Ye;Jeong, Seung-Il;Shim, Jae Suk;Jang, Seon Il
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.2
    • /
    • pp.131-137
    • /
    • 2013
  • The present study has been undertaken to investigate the effect of the extract of Cirsium japonicum var. ussuriense leaves (CLE) on blood circulation in a rat model of topical ferric chloride ($FeCl_3$)-induced carotid artery damage. $FeCl_3$ treatment seriously damaged the carotid artery such as the walls of the artery, blood flow and inflammation. However, CLE administration has ameliorated blood circulation and suppressed vessel inflammation. CLE administration also has ameliorated the $FeCl_3$-induced artery tissue damage. Furthermore, CLE significantly suppressed the expression of adhesion molecules. These results suggest that CLE ameliorate blood circulation through suppress inflammatory mediator and adhesion molecule production.

Chemical Coagulation Conditions and Efficiency of Sewage with Al(III) and Fe(III) Coagulants (하수의 화학적 응집조건 및 응집제별 응집효율 분석)

  • Park, June-Gue;Tian, Dong-Jie;Park, Noh-Back;Jun, Hang-Bae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.463-474
    • /
    • 2010
  • In this study, chemical coagulation conditions for treating combined sewer overflow(CSO) occurred during rainy season were evaluated by jar tests with aluminum sulfate[$Al_2(SO_4)_3{\cdot}17H_2O$] and ferric chloride[$FeCl_3{\cdot}6H_2O$]. The raw domestic sewage sampled from the primary sedimentation tank at a local sewage treatment plant was filtered through $150{\mu}m$ sieve before using. Point of zero charge(PZC) for various dose of aluminum sulfate occurred at pH 5.8-6.5, while for ferric chloride occurred at pH 5.3-6.0 in term of streaming current(SC) values. Charge neutralization ability of aluminum sulfate was bigger than that of ferric chloride. Optimum pH and dose of aluminum sulfate and ferric chloride were 6.2, 0.438mM and 5.8, 0.925mM, respectively. Removal efficiencies of TCOD, turbidity, SS and TP were 75, 97, 95, 96% with aluminum sulfate and 74, 96, 98, 99% with ferric chloride at their optimum coagulation conditions. More efficient removal of SS, TP and small particles was possible with ferric chloride at optimum coagulation conditions. Both SC values and COD removal started to increase where soluble phosphorus was completely removed.

Arsenic Removal using the Surface Modified Granular Activated Carbon treated with Ferric Chloride (염화철(III)로 표면개질 활성탄을 이용한 비소제거)

  • Park, Y.R.;Hong, S.H.;Kim, J.H.;Park, J.Y.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.77-85
    • /
    • 2012
  • The present study investigates treatment methods for removal of arsenic from wastewater. The granular activated carbon (GAC) with the coating of iron chloride ($FeCl_3$) was used for the treatment of a low concentration of arsenic from wastewater. Batch experiments were performed to investigate the synthesis of Fe-GAC (Iron coated granular activated carbon), effects of pH, adsorption kinetics and the Langmuir model. The synthesized Fe-GAC with 0.1 M $FeCl_3$ shows best removal efficiency. Adsorption studies were carried out in the optimum pH range of 4-6 for arsenic removal. The Fe-GAC showed promising results by removing 99.4% of arsenic. In the adsorption isotherm studies, the observed data fitted well with the Langmuir models. In continuous column study showed that As(V) could be removed to below 0.25 mg/L within 1,020 pore volume. Our results suggest that the surface modified granular activated carbon treated with $FeCl_3$ for effective removal of arsenic from wastewater.

Optimization of Ferric Chloride Induced Carotid Artery Thrombosis Model in a Rat: Effect of Ginkgo biloba Extracts

  • Lee, In Sun;Choi, SeungGu;Jeon, Won Kyung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.43 no.4
    • /
    • pp.179-187
    • /
    • 2011
  • Animal models are important tools in thrombosis research and preclinical drug development. In recent studies, ferric chloride ($FeCl_3$) has been widely used to induce arterial thrombosis in a variety of species. The purpose of this study was to find an optimal concentration of $FeCl_3$ and validate this model suited better for thrombosis research. A small piece of filter paper, soaked in $FeCl_3$ solution (10, 20 or 35%, v/v, in distilled water) was topically applied on the carotid artery of SD rats to measure the time to occlusion (TTO) and thrombus weight (TW) to ascertain 35%, as an optimal $FeCl_3$ concentration ($8.63{\pm}0.92min$; p =0.000, $0.79{\pm}0.03mg/mm$; p =0.000, respectively). To validate this experimental model, Ginkgo biloba special extract EGb761 (5, 10 or 30 mg/kg) as a reference agent administered by peritoneal route for 1h prior to the induction of thrombosis, showed significantly delayed TTO in a dose dependent manner ($18.50{\pm}2.17$, $29.17{\pm}1.83$, and $38.00{\pm}1.79min$, respectively) and significantly reduced TW and repaired collagen fibre in the injured vessel compare to vehicle group. Our results provide a simple, reproducible and well controlled in vivo screening system to induce thrombosis in rats by the topical application of 35% $FeCl_3$ to assess the efficacy of the new anti-thrombotic agents.

  • PDF

A Study on the Manufacture of $\alpha$-Fe$_2$O (Major Material of Ferrite) by Waste Pickling Liquor of Steel (강철의 산세폐액으로부터 Ferrite의 주원료인 Fe$_3$O$_3$의 제조에 관한 연구)

  • 최석진
    • Journal of the Korean Ceramic Society
    • /
    • v.13 no.1
    • /
    • pp.25-29
    • /
    • 1976
  • The properties vary with quality of ferric-oxide that is major material of ferrites. In this point of view, a manufacturing method of pure and homogeneous fine ferric oxide is very important. The characters of this study are as follows: 1) Ferric oxide was made from waste pickling liquor of steel. 2) The crude ferric-oxide that is made by roasting the pickling liquor was dissolved in 20% HCI solution and then produced ferric chloride is purified by ethyl ether extraction. 3) The methanol solution of purified ferric chloride was sprayed into the refractory tube with compressed air and propane gas and then ignited leading to the ferric-oxide powder. 4) The produced oxide powder was introduced to the scrubber type vessel throught cooling system in order to collect the powder. 5) Crystalline phase of the powder was identified by X-ray diffraction and particle size, crystalline shape of the powder were investigated by settling method and electron microscope and the effects of concentration of ferric chloride in methanol on grain size were discussed. Results were obtained as fellows: 1) Total impurity in the ferric oxide produced from waste pickling liquor was 3.7%. 2) The solubilityof crude ferric oxide that was made from waste pickling liquor in HCI solution increased with the HCI concentration and reached to saturation range at 15% HCI concentration. 3) Extraction of FeCl3 increased with HCI concentration which is solvent. 4) Alpha ferric oxide obtained was very fine crystalline particles, the mean crystalline grain increased with the concentration of ferric chloride, and mean grain size distributed from 3.5$\mu$(at 0.5mole/l) to 0.5$\mu$(at 0.05mole/l).

  • PDF

Enhance degradation of insecticide chlorpyrifos by iron salts and potassium persulfate during zerovalent iron treatment in aqueous solution

  • Rahman, M. Mokhlesur;Hwang, Jung-In;Kwak, Se-Yeon;Kim, Jang-Eok
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.4
    • /
    • pp.383-389
    • /
    • 2018
  • Degradation of the insecticide O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate (chlorpyrifos) in aqueous solution was investigated using iron salts and potassium persulfate during ZVI treatment through a series of batch experiments. The degradation rate of chlorpyrifos increased with increases in the concentrations of iron salts and potassium persulfate in the aqueous system. Ferric chloride was found to be the most effective iron salt for the ZVI-mediated degradation of chlorpyrifos in aqueous solution. Further, the iron salts tested could be arranged in the following order in terms of their effectiveness: $FeCl_3$> $Fe_2(SO_4)_3$> $Fe(NO_3)_3$. The persulfate-ZVI system could significantly degrade chlorpyrifos present in the aqueous medium. This revealed that chlorpyrifos degradation by treatment with $Fe^0$ was promoted on adding ferric chloride and potassium persulfate. The kinetics of the degradation of chlorpyrifos by persulfate-amended $Fe^0$ was higher than that for iron-salt-amended $Fe^0$. This suggests that using a sequential $Fe^0$ reduction-ferric chloride or $Fe^0$ reduction-persulfate process may be an effective strategy to enhance the removal of chlorpyrifos in contaminated water.

Screening of Anti-thrombotic Activity of Herbal Extracts in Ferric Chloride-induced Thrombosis Model (경동맥 혈전 유발 동물모델을 이용한 한약재 추출물의 효능 검색)

  • Park, In Sil;Lee, Ki Mo;Lee, In Sun;Han, Jae Il;Jeon, Won Kyung
    • The Korea Journal of Herbology
    • /
    • v.28 no.5
    • /
    • pp.33-38
    • /
    • 2013
  • Objectives : The aim of this study was to examine anti-thrombotic effect of traditional herbal extracts in a rat model of ferric chloride ($FeCl_3$)-induced carotid arterial thrombosis. Methods : Thirty minutes prior to a 35% $FeCl_3$ application, Sprague Dawley(SD) rats were injected with the 10 types of traditional herbal extracts (100mg/kg, intraperitoneal injection), respectively. The effect of these herbal extracts was examined for time to occlusion(TTO) using the Laser doppler flow meter and measured for thrombus weight (TW) in $FeCl_3$-induced thrombosis model. Results : In the TTO, Salvia miltiorrhiza (Sm, $2.30{\pm}0.28$ min, p<0.001) and Santalum album (Sa, $2.19{\pm}0.19$ min, p<0.001) showed significantly delayed TTO more than twice compared with Saline-treated group. Cnidium officinale (Co), Psoralea corylifolia (Pc), Scutellatia baicalensis (Sba), Panax notoginseng (Pn), Angelica tenuissima (At), Scrophularia buergeriana (Sbu), Rhus verniciflua (Rv) and Picrasma quassioides (Pq), except for Rhus verniciflua (Rv) also meaningfully impeded TTO more than one fold. In addition, Salvia miltiorrhiza, Santalum album, Cnidium officinale, Psoralea corylifolia and Scutellatia baicalensis significantly reduced TW more than 10% compared with Saline-treated group. Especially, Salvia miltiorrhiza and Santalum album showed the most excellent anti-thrombotic effect among the 10 herbal extracts tested on the restoration of altered TTO and TW. Conclusions : These results suggest that Sm and Sa extracts have outstanding anti-thrombotic effect in $FeCl_3$-induced thrombosis model and is potentially useful as herbal medicines for the treatment and prevention of thrombosis.