• Title/Summary/Keyword: Fermented garlic complex

Search Result 6, Processing Time 0.018 seconds

Effects of Complex Food Ingredient Composed of Garlic and Fermented Soybean Hypocotyl on the Serum Lipid Profiles of the Rats Fed High-Fat Diet (마늘과 대두배아 발효물로 구성된 복합 식품소재가 고지방 식이를 섭취한 흰쥐의 혈중 지질 성분에 미치는 영향)

  • Choi, Hyung-Taek;Kim, Eui-Su;Ham, Seung-Shi;Park, Seung-Yong;Chung, Ha-Yull
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.215-219
    • /
    • 2008
  • Garlic that has been reacted with fermented soybean hypocotyl, termed Bio-Garlic, contains 6 times more allithiamine than garlic alone, and it was prepared as a complex food ingredient. To examine the effects of Bio-Garlic on obesity and hyperlipidemia, rats were fed a high-fat diet for 8 weeks. Bio-Garlic arrested increases in body weight without affecting feed intake in the rats. The Bio-Garlic also lowered serum levels of total cholesterol and triglycerides, while increased serum HDL-cholesterol levels. The atherogenic index of the Bio-Garlic treated group decreased, suggesting that Bio-Garlic has the potential to be marketed as a functional health food ingredient with beneficial effects on the circulatory system.

Isolation of Bioactive Compounds from the Ethylacetate Fraction of Fermented Garlic Complex and their Tyrosinase Inhibition Activities (대산(大蒜)을 포함하는 복합발효물의 에틸아세테이트 분획으로부터 Tyrosinase 저해활성 성분의 분리 및 동정)

  • Song, Hyo-Nam;Baek, Nam-In
    • Korean Journal of Plant Resources
    • /
    • v.33 no.2
    • /
    • pp.63-72
    • /
    • 2020
  • Fermented complex from garlic and nine medicinal plants were developed as a natural whitening material. Tyrosinase inhibition activity was determined and four active compounds were isolated. The nutritional components of fermented garlic complex (FGC) were analyzed to confirm the applicability as a functional food material. Tyrosinase inhibitory effect of FGC was 88.6%. Methanol extract was partitioned with EtOAc, n-BuOH and H2O. From the EtOAc fraction (47 g), which showed the highest yield, active fractions were separated by repeated TLC, silica gel and ODS column chromatography to isolate active compounds. The chemical structures of the isolated compounds were analyzed by NMR and MS spectra. Phenylpropanoid compounds of 2,4,5-trihydroxy-benzenepropanoic acid (1) (1.9 mg) and 2,3,5-trihydroxy-benzenepropanoic acid (2) were confirmed. In addition, 2,4-dihydroxy-hydrocinnamic acid (3) (3.3 mg) and (+)sesamin (4) (6.1 mg) were isolated. These compounds will be useful as index compounds or functional compounds in FGC.

Effects of Mixed Scutellaria baicalensis Extracts as Natural Preservative on Efficacy and Storage of Lactic Acid-Fermented Garlic Extract (천연보존료 복합 황금추출물이 유산균발효 마늘추출물의 저장성 및 기능성에 미치는 영향)

  • Lee, Hee-Seop;Lee, Sun-Jin;Sohn, Johann;Yu, Heui-Jong;Cho, Hong-Yon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.1
    • /
    • pp.10-17
    • /
    • 2017
  • The natural preservative "complex Scutellaria baicalensis extract (BHC)" contains Scutellaria baicalensis, Glycyrrhiza uralensis (liquorice), Zizyphus jujube (jujube), and Astragalus propinquus (milk vetch root). BHC has been used as a natural preservative for more than 10 years to increase storage duration and quality of food with strong antibacterial activity. BHC has been added into functional foods as a subsidiary ingredient. However, no studies have been performed to test whether or not BHC affects the activity of main functional ingredients. In this study, we tested whether or not BHC has any effect on the hepatoprotective activity of lactic acid-fermented garlic extract (LAFGE) when formulated in a clinical test supplement. $H_2O_2-induced$ oxidative damage in HepG2 cells was not attenuated by BHC, indicating that BHC had no influence on the protective effect of LAFGE against oxidative damage. Furthermore, BHC had no effect on the hepatoprotective effect of LAFGE against acetaminophen-induced acute liver injury in rats, as indicated by no changes in alanine transaminase and aspartate transaminase levels. In conclusion, BHC, formulated in the clinical test supplement with LAFGE, had no effect on hepatoprotective activity, indicating BHC could be considered as a suitable natural preservative for liquefied functional food materials.

Cholesterol-Lowering Effect and Anticancer Activity of Kimchi and Kimchi Ingredients (김치와 김치재료의 콜레스테롤 저하 및 항암효과)

  • 이재준;정영기
    • Journal of Life Science
    • /
    • v.9 no.6
    • /
    • pp.743-752
    • /
    • 1999
  • The purpose of the paper is to explore the current knowledge on the nutritional evaluation, cholesterol-lowering effect and antitumor activity of kimchi and its ingredients(Korean cabbage, garlic, red pepper powder, ginger and onion). Kimchi contains high contents of nutrients such as vitamins(ascorbic acid, $\beta$-carotene and vitamin B complex), minerals(calcium, potassium, iron and phosphorous), essential amino acids and dietary fiber. Kimch also contains high levels of lactic acid bacteria, allicin, capsaicin, organic acid, phenol compounds, flavonoid and sulfur compounds. The dietary fiber and lactic acid bacteria isolated from kimchi are effective in improving intestinal microflora of human. Isoluble dietary fiber shows anticancer activity, but soluble dietary fiber shows hypocholesterolemic effect. Lactic acid bacteria isolated from kimchi acts as a hypocholesterolemic or anticancer agent. A major ingredient of kimchi is mainly cruciferous and allium family vegetables, which were also reported to prevent cancer and atherosclerosis. It is suggested that kimchi is important not only as one of the traditional fermented Korean food but also as therapeutic agent for carcinogenesis and hypercholesterolemic state.

  • PDF

Metabolic Pathways Associated with Kimchi, a Traditional Korean Food, Based on In Silico Modeling of Published Data

  • Shin, Ga Hee;Kang, Byeong-Chul;Jang, Dai Ja
    • Genomics & Informatics
    • /
    • v.14 no.4
    • /
    • pp.222-229
    • /
    • 2016
  • Kimchi is a traditional Korean food prepared by fermenting vegetables, such as Chinese cabbage and radishes, which are seasoned with various ingredients, including red pepper powder, garlic, ginger, green onion, fermented seafood (Jeotgal), and salt. The various unique microorganisms and bioactive components in kimchi show antioxidant activity and have been associated with an enhanced immune response, as well as anti-cancer and anti-diabetic effects. Red pepper inhibits decay due to microorganisms and prevents food from spoiling. The vast amount of biological information generated by academic and industrial research groups is reflected in a rapidly growing body of scientific literature and expanding data resources. However, the genome, biological pathway, and related disease data are insufficient to explain the health benefits of kimchi because of the varied and heterogeneous data types. Therefore, we have constructed an appropriate semantic data model based on an integrated food knowledge database and analyzed the functional and biological processes associated with kimchi in silico. This complex semantic network of several entities and connections was generalized to answer complex questions, and we demonstrated how specific disease pathways are related to kimchi consumption.

Hygienic Superiority of Kimchi (김치의 위생학적 우수성)

  • Kim, Yong-Suk;Shin, Dong-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.2
    • /
    • pp.91-97
    • /
    • 2008
  • Kimchi is a representative traditional food in Korea and a type of vegetable product that is the unique complex lactic acid fermentation in the world. It can be considered as a unique fermented food generated by various flavors, which are not included in raw materials, that can be generated by mixing and fermenting various spices and seasonings, such as red pepper powder, garlic, ginger, and salted fish, added to Chinese cabbages. Functionalities in Kimchi have been approved through several studies and the probiotic function that is mainly based on lactic acid bacteria including their physical functions in its contents has also verified. Studies on the verification of the safety of Kimchi including its physiological functions have been conducted. In particular, the function of lactic acid bacteria, which is a caused of the fermentation of Kimchi. Although the lactic acid bacteria contributed to the fermentation of Kimchi is generated from raw and sub-materials, the lactic acid bacteria attached on Chinese cabbages has a major role in the process in which the fermentation temperature and dominant bacteria are also related to the process. The salt used in a salt pickling process inhibits the growth of the putrefactive and food poisoning bacteria included in the fermentation process of Kimchi and of other bacteria except for such lactic acid bacteria due to the lactic acid and several antimicrobial substances generated in the fermentation process, such as bacteriocin and hydrogen peroxide. In addition, the carbon dioxide gas caused by heterolactic acid bacteria contributes to the inhibition of aerobic bacteria. Furthermore, special ingredients included in sub-materials, such as garlic, ginger, and red pepper powder, contribute to the inhibition of putrefactive and food poisoning bacteria. The induction of the change in the intestinal bacteria as taking Kimchi have already verified. In conclusion, Kimchi has been approved as a safety food due to the fact that the inhibition of food poisoning bacteria occurs in the fermentation process of Kimchi and the extinction of such bacteria.