• Title/Summary/Keyword: Fermentation and Digestion

Search Result 208, Processing Time 0.03 seconds

Accelerating Effect of Squid Viscera on the Fermentation of Alaska pollack Scrap Sauce

  • Kim, Sang-Moo
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.2
    • /
    • pp.103-106
    • /
    • 1999
  • Fish sauce is a liquid form of salt-fermented fish and has played an important role in Korean dietary life. Fish sauce was manufactured by utilizing Alaska pollack scrap from Himedara(seasoned and dried Alaska pollack tail) processing . In addition, the effects of squid viscera as a fermentation enhancer were also evaluate.Ph of Alaska plllack scrap sauce with squid viscera was lower than that of control over the entire fermentation process. Squid viscera acceleraged the production of amino-nitrogen, VBN , TBA and free amino acids, and the degradation of IMP and Inosine. The addition of squid viscera and koji at 5% concentration, respectively , also accelerated the digestion of Alaska pollack scrap and was similar to the results of squid viscera at 10% concentration.

  • PDF

Lactic acid and alcoholic fermentation of low-salted raw kanjang digestion liquor made from Bacillus subtilis var. globigii and Scopulariopsis brevicaulis inoculated meju (Bacillus subtilis var. globigii와 Scopulariopsis brevicaulis 접종메주로 단기숙성 저염생간장의 젖산 및 알콜발효)

  • Chung, Yeung-Gun;Choi, Choeng;Chung, Hyun-Chae;Im, Moo-Hyeog;Choi, Jong-Dong;Lee, Choon-Woo;Choi, Kwang-Soo
    • Applied Biological Chemistry
    • /
    • v.41 no.6
    • /
    • pp.405-409
    • /
    • 1998
  • This work was carried out to investigate the behavior of sugars contained in raw soybean during cooking and meju preparation processes, and the effects of sugar addition to the raw kanjang digestion liquor made from G8 and SB meju on the lactic acid and alcoholic fermentation of kanjang. Sharp reduction in sugars content in soybean during cooking and meju preparation process was observed. Rapid lactic acid and alcoholic fermentation in the G8 and SB kanjang with 5% added glucose was observed but not in the corresponding kanjang without sugar addition after inoculation of Pediococcus halophilus, Zygosaccharomyces rouxii and Candida versatilis starter culture to the low-salted raw kanjang digestion liquor made respectively from G8 and SB meju. 0.46% and 0.88% of lactic acid and 1% and 2% of alcohol content in the G8 and SB kanjang respectively was observed 160 hours after the inoculation of the lactic acid bacteria starter culture.

  • PDF

Effects of Lactic Acid Bacteria Inoculant on Fermentation Quality and in vitro Rumen Fermentation of Total Mixed Ration

  • Choi, Yeon Jae;Lee, Sang Suk
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.3
    • /
    • pp.132-140
    • /
    • 2019
  • Fermented total mixed ration (TMR) is a novel feed for ruminants in South Korea. The purpose of this study was to evaluate the effects of lactic acid bacteria (LAB) on the quality of TMR and in vitro ruminal fermentation. Strains of three LAB spp. (Lactobacillus plantarum, L. brevis, L. mucosae) were used in fermentation of TMR. Inoculations with the three LAB spp. lowered pH and increased concentrations of lactic acid, acetic acid, and total organic acid compared to non-LAB inoculated control (only addition of an equivalent amount of water) (p<0.05). Bacterial composition indicated that aerobic bacteria and LAB were higher. However, E. coli were lower in the fermented TMR than those in the control treatment (p<0.05). Among the treatments, L. brevis treatment had the highest concentration of total organic acid without fungus detection. Gas production, pH, and ammonia-nitrogen during ruminal in vitro incubation did not differ throughout incubation. However, ruminal total VFA concentration was higher (p<0.05) in the LAB spp. treatments than the control treatment at 48 hours. Overall, the use of L. brevis as an inoculant for fermentation of high moisture. TMR could inhibit fungi growth and promote lactic fermentation, and enhance digestion in the rumen.

THE EFFECT OF MATURITY OF ITALIAN RYEGRASS (Lolium multiflorum, L) ON IN VITRO RUMEN DIGESTION AND GAS PRODUCTION

  • Fariani, Armina;Warly, L.;Ichinohe, T.;Fujihara, T.;Harumoto, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.3
    • /
    • pp.247-254
    • /
    • 1996
  • Three stages of growth of Italian ryegrass (pre-blooming, P-B; early-blooming, E-B; and late-blooming, L-B) were used to evaluate the effect of maturity on in vitro digestion of dry matter, fiber components and gas production. The rumen digestibility and gas production values were obtained by incubation of each sample in the rumen fluid of sheep for 12, 24, 36, 48 and 72 hr, respectively. The results showed that digestibility of dry matter (DM) significantly reduced (p < 0.05) as advancing maturity of the grass. Similarly, the digestibility of neutral detergent fiber (NDF) and acid detergent fiber (ADF) also significantly decreased (p < 0.05) with advancing maturity at all incubation times. However, the effect of maturity on digestibility of cellulose and hemicellulose was only detected when the samples were incubated more than 36 hr, where L-B was lower than P-B and E-B. Potential digestibility of nutrients, the maximum digestibility attainable in the rumen theoretically, was also higher at P-B than those of E-B and L-B. The amount of gas produced by microbial fermentation was closely related to the extent of DM digestion, and it was negatively correlated with advancing maturity of the grass.

Evaluation of the nutritional value of locally produced forage in Korea using chemical analysis and in vitro ruminal fermentation

  • Ki, Kwang Seok;Park, Su Bum;Lim, Dong Hyun;Seo, Seongwon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.3
    • /
    • pp.355-362
    • /
    • 2017
  • Objective: The use of locally produced forage (LPF) in cattle production has economic and environmental advantages over imported forage. The objective of this study was to characterize the nutritional value of LPF commonly used in Korea. Differences in ruminal fermentation characteristics were also examined for the LPF species commonly produced from two major production regions: Chungcheong and Jeolla. Methods: Ten LPF (five from each of the two regions) and six of the most widely used imported forages originating from North America were obtained at least three times throughout a year. Each forage species was pooled and analyzed for nutrient content using detailed chemical analysis. Ruminal fermentation characteristics were also determined by in vitro anaerobic incubations using strained rumen fluid for 0, 3, 6, 12, 24, and 48 h. At each incubation time, total gas, pH, ammonia, volatile fatty acid (VFA) concentrations, and neutral detergent fiber digestibility were measured. By fitting an exponential model, gas production kinetics were obtained. Results: Significant differences were found in the non-fiber carbohydrate (NFC) content among the forage species and the regions (p<0.01). No nutrient, other than NFC, showed significant differences among the regions. Crude protein, NFC, and acid detergent lignin significantly differed by forage species. The amount of acid detergent insoluble protein tended to differ among the forages. The forages produced in Chungcheong had a higher amount of NFC than that in Jeolla (p<0.05). There were differences in ruminal fermentation of LPF between the two regions and interactions between regions and forage species were also significant (p<0.05). The pH following a 48-h ruminal fermentation was lower in the forages from Chungcheong than from Jeolla (p<0.01), and total VFA concentration was higher in Chungcheong than in Jeolla (p = 0.05). This implies that fermentation was more active with the forages from Chungcheong than from Jeolla. Analysis of gas production profiles showed the rate of fermentation differed among forage species (p<0.05). Conclusion: The results of the present study showed that the nutritional values of some LPF (i.e., corn silage and Italian ryegrass) are comparable to those of imported forages widely used in Korea. This study also indicated that the nutritional value of LPF differs by origin, as well as by forage species. Detailed analyses of nutrient composition and digestion kinetics of LPF should be routinely employed to evaluate the correct nutritional value of LPF and to increase their use in the field.

Chemical Composition, In situ Digestion Kinetics and Feeding Value of Oat Grass (Avena sativa) Ensiled with Molasses for Nili-Ravi Buffaloes

  • Khan, Muhammad Ajmal;Sarwar, M.;Nisa, M.;Iqbal, Z.;Khan, M.S.;Lee, W.S.;Lee, H.J.;Kim, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.8
    • /
    • pp.1127-1133
    • /
    • 2006
  • This study examined the effect of cane molasses and fermentation time on chemical composition and characteristics of oat grass silage (OGS) and its in situ digestion kinetics, intake, digestibility, milk yield and composition in buffaloes (Bubalus bubalis). Oat grass (OG) harvested at 50-days of age was ensiled in laboratory silos with cane molasses at the rate of 0, 2, 4 and 6% of OG dry matter (DM) for 30, 35 and 40 days. Silage pH was decreased while lactic acid content increased with increasing level of cane molasses and fermentation time. Dry matter (DM), crude protein (CP) and true protein (TP) content of OGS were (p<0.05) significantly higher with higher cane molasses levels. However, they were not affected by the fermentation time. Similar trends were observed for neutral detergent fiber (NDF), acid detergent fiber (ADF), cellulose, acid detergent lignin and ash content of OGS. The OG ensiled for 30-days with 2% molasses was screened from laboratory study and used to determine comparative in situ DM and NDF digestion kinetics of OG and its silage. In situ DM and NDF digestibilities of OG were significantly (p<0.05) higher than OGS. Ruminal DM and NDF lag time, rate and extent of digestion of OG and its silage were similar. Two experimental diets of OG and OGS were formulated using 75:25 forage to concentrate ratio on a DM basis. Dry matter and CP intakes were similar in lactating buffaloes fed either OG- or OGS-based diets. However, NDF intake was higher in buffaloes fed the OG-compared with OGS-based diet. Apparent DM, CP and NDF digestibilities were similar in lactating buffaloes fed either OG- or OGS-based diets. Milk yield (4% FCM) was similar in buffaloes fed either OG-(10.3 kg/d) or OGS-(9.95 kg/d) based diets. Milk fat, total solids and true protein content were higher with OG compared with the OGS diet. Solids not fat and CP content were similar in milk of buffalo fed either OG or OGS. The results of this study indicate that OG ensiled with 2% molasses could safely replace 75% DM of green oat fodder in the diets of lactating buffaloes without negatively affecting intake, digestibility, milk yield and composition.

Optimization of Anaerobic Process by Enzyme Treatment of High Concentration Organic Substances in Food Wastewater

  • Tae-Hwan JEONG;Woo-Taeg KWON
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.6 no.2
    • /
    • pp.33-37
    • /
    • 2023
  • Purpose: Since 2013, marine dumping of wastewater has been banned, and research on eco-friendly and efficient land treatment has emerged. This study compared and tested changes in biogas production and anaerobic process efficiency depending on whether or not enzyme pretreatment was performed during anaerobic digestion from single-phase and two-phase to medium-temperature. Research design, data and methodology: The total sugar, direct sugar, pH, and acidity before and after fermentation were analyzed by G/C by anaerobic fermentation of the liquor wastewater, food wastewater 1, and food wastewater 2 at 30℃ for 67 hours, and the amount of methane gas generated was analyzed by balloon volume. Results: It was found that stable organic acid concentration and pH were found in the enzyme-treated food wastewater 2, and the amount of methane gas generated was also increased. Conclusions: When anaerobic digestion of the liquor wastewater and the food wastewater together, the performance of enzyme pretreatment resulted in increased digestive efficiency. It will be the basic data that can contribute to carbon neutrality and greenhouse gas reduction by increasing the production of biogas.

Effect of Temperature and Pre-treatment for Elutriated Acidogenic Fermentation of Piggery Waste (돈사폐수의 세정산발효시 온도와 전처리의 영향)

  • Bae, Jin-Yeon;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.34-39
    • /
    • 2005
  • The performance of elutriated acid fermentation with slurry-type piggery waste was investigated, especially to evaluate the effects of temperature and pre-treatment. In the first phase, the acid elutriation reactor with piggery waste after centrifugation operated at both mesophilic and thermophilic conditions to evaluate the effect of temperature. Solubilization yield($gVFAs/gSCOD_{prod.}$) and acidification rate($gVFAs/gSCOD_{prod.}$) in the thermophilic digestion were 0.45 and 0.55, which were higher than those of the mesophilic digestion, 0.25 and 0.45. In addition, the acid elutriation reactor at thermophilic temperature is more effective in removing e-coli. In the second phase, the acid elutriation reactor was fed with piggery waste before centrifugation. With piggery wastes before centrifugation, the solubilization yield and the acidificaton rate were 0.40 and 0.80, respectively, which were higher than the rates using piggery waste after centrifugation at both mesophilic and thermophilic conditions. The higher sludge volume reduction of 80% benefits sludge management. Furthermore, economical advantages can be achieved by removing the pre-treatment process, such as centrifugation. Consequently, the treatment with piggery waste before centrifugation proved to be effective. Also, the optimum temperature condition was estimated at mesophilic or thermophilic conditions, considering solubilization yields and acidification rates, though the system should be heated.

Manipulation of the Rumen Ecosystem to Support High-Performance Beef Cattle - Review -

  • Jouany, J.P.;Michalet-Doreau, B.;Doreau, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.1
    • /
    • pp.96-114
    • /
    • 2000
  • Genetically selected beef cattle are fed high-energy diets in intensive production systems developed in industrial countries. This type of feeding can induce rumen dysfunctions that have to be corrected by farmers to optimise cost-effectiveness. The risk of rumen acidosis can be reduced by using slowly degradable starch, which partly escapes rumen fermentation and goes on to be digested in the small intestine. Additives are proposed to stabilise the rumen pH and restrict lactate accumulation, thus favouring the growth of cellulolytic bacteria and stimulating the digestion of the dietary plant cell wall fraction. This enhances the energy value of feeds when animals are fed maize silage for example. Supplementation of lipids to increase energy intake is known to influence the population of rumen protozoa and some associated rumen functions such as cellulolysis and proteolysis. The end products of rumen fermentation are also changed. Lipolysis and hydrogenation by rumen microbes alter the form of fatty acids supplied to animals. This effect is discussed in relation with the quality of lipids in beef and the implications for human health. Conditions for optimising the amount of amino acids from microbial proteins and dietary by-pass proteins flowing to the duodenum of ruminants, and their impact on beef production, are also examined.

Natural Products as Manipulators of Rumen Fermentation

  • Wallace, R. John;McEwan, Neil R.;McIntosh, Freda M.;Teferedegne, Belete;Newbold, C. James
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.10
    • /
    • pp.1458-1468
    • /
    • 2002
  • There is increasing interest in exploiting natural products as feed additives to solve problems in animal nutrition and livestock production. Essential oils and saponins are two types of plant secondary compounds that hold promise as natural feed additives for ruminants. This paper describes recent advances in research into these additives. The research has generally concentrated on protein metabolism. Dietary essential oils caused rates of NH$_3$ production from amino acids in ruminal fluid taken from sheep and cattle receiving the oils to decrease, yet proteinase and peptidase activities were unchanged. Hyper-ammonia-producing (HAP) bacteria were the most sensitive of ruminal bacteria to essential oils in pure culture. Essential oils also slowed colonisation and digestion of some feedstuffs. Ruminobacter amylophilus may be a key organism in mediating these effects. Saponin-containing plants and their extracts appear to be useful as a means of suppressing the bacteriolytic activity of rumen ciliate protozoa and thereby enhancing total microbial protein flow from the rumen. The effects of some saponins seems to be transient, which may stem from the hydrolysis of saponins to their corresponding sapogenin aglycones, which are much less toxic to protozoa. Saponins also have selective antibacterial effects which may prove useful in, for example, controlling starch digestion. These studies illustrate that plant secondary compounds, of which essential oils and saponins comprise a small proportion, have great potential as 'natural' manipulators of rumen fermentation, to the potential benefit of the farmer and the environment.