• Title/Summary/Keyword: Fenton reaction

Search Result 201, Processing Time 0.03 seconds

Fenton-like Reaction for Treatment of Petroleum-Contaminated Silty Clay after Soil Washing Process (토양세척 후의 유류 오염 Silty Clay 처리를 위한 유사펜톤 산화반응)

  • So, Myung-Ho;Ha, Ji-Yeon;Yu, Jae-Bong;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • This research was performed to assess a Fenton-like oxidation using naturally present iron in the field to treat remained oils throughout silty clay residues which finally resided even after a series of soil washing process. Biodegradability was thus tested for reaction products to investigate a possible treatment of the Fenton-like oxidation coupled with a biological treatment process. For those purposes, two types of field soil samples (e.g., dewatered cake after conditioning with a polymer and not-dewatered residue) were tested to remove TPH by adding the various concentration of hydrogen peroxide ($H_2O_2$). Moreover the biodegradability of treated samples was observed based on the ratio of $BOD_5/COD_{Cr}$ after Fenton-like oxidation. The Highest removal of TPH was at 1% of hydrogen peroxide ($H_2O_2$) when hydrogen peroxide ($H_2O_2$) was continuously injected for a period of time rather than that of spot introduction with the same amount of it. For the dewatered cake, TPH was effectively treated when the ratio of solid and water was mixed at 1 : 2. Employing cooking oil could increase solubility of TPH due to enhanced surface-active escalating TPH desorption from silty clay. Nonetheless, the biodegradability was decreased as long as the oxidation duration being extended regardless of operational conditions. It was therefore proved that Fenton-like oxidation using $H_2O_2$ and natural iron minerals was able to remove adsorbed oils in silty clay but the removal efficiency of TPH was low. And if a biological treatment process followed after Fenton-like oxidation, microorganisms would need enough time for acclimation.

Degradation of herbicide paraquat by Fenton reagent and UV light irradiation (Fenton 시약 및 UV 광 조사에 의한 제초제 paraquat의 분해)

  • Kim, Byung-Ha;Ahn, Mi-Youn;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.3 no.3
    • /
    • pp.20-26
    • /
    • 1999
  • This study was to investigate the potential degradation of a herbicide paraquat by Fenton reagents(ferric ion and hydrogen peroxide) under UV light irradiation(365 nm) in an aqueous solution. When $10{\sim}500$ mg/L of paraquat was reacted with either ferric ion or hydrogen peroxide in the dark or under UV light, no degradation was occurred. However, the simultaneous application of both ferric ion(0.8 mM) and hydrogen peroxide(0.140 M) in paraquat solution(500 mg/L) caused dramatic degradation of paraquat both in the dark (approximately 78%) and under UV light(approximately 90%). The reaction approached an equilibrium state in 10 hours. In the dark, when $0.2{\sim}0.8$ mM ferric ion was added, $20{\sim}70%$ paraquat of $10{\sim}500$ mg/L was degraded, regardless of hydrogen peroxide concentrations($0.035{\sim}0.140$ M), while under UV light, 95% of 10 and 100 mg/L paraquat was degraded regardless of ferric ion and hydrogen peroxide concentrations. At paraquat concentration of 200 and 500 mg/L, paraquat degradation increased with increasing ferric ion concentrations as in the dark. However the increase in hydrogen peroxide concentration did not affect the extent of paraquat degradation. The initial reaction rate constants(k) for paraquat degradation ranged from 0.0004 to 0.0314, and 0.0023 to 0.0367 in the dark and under UV light, respectively. The initial reaction rate constant increased in proportion to the increase in ferric ion concentration in both conditions. The half-lives of paraquat degradation(t1/2) were 20 - 1,980 and 19 - 303 minutes in the dark and under UV light, respectively. This study indicates that Fenton reagents under UV light irradiation are more potent than in the dark in terms of herbicide paraquat degradation in an aqueous solution.

  • PDF

Removal of acetaminophen from wastewater by constructed wetlands with Scirpus validus

  • Phong, Vo Hoang Nhat;Koottatep, Thammarat;Chapagain, Saroj Kumar;Panuvatvanich, Atitaya;Polprasert, Chongrak;Ahn, Kyu-Hong
    • Environmental Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.164-170
    • /
    • 2016
  • Since most of the existing wastewater treatment options lack the ability to treat micro-contaminants, the increased use of pharmaceuticals and personal care products (PPCPs) and release as human waste have become a serious concern in recent years. Constructed wetlands (CWs) are a low-cost technology for wastewater treatment, however, its performance in term of PPCPs removal has not yet been fully investigated. This study aimed to characterize the removal factors and efficiency of acetaminophen (ACT) removal by CWs. The results revealed the decreased concentrations of ACT with increasing hydraulic retention times (HRT) of 0, 3, 5 days. The contribution of removal factors was found to be varied with initial ACT concentration. At the low ACT concentration (i.e. 1 ppb), plant uptake was the dominant, followed by microbial and photolytic removal. In contrast, at the high ACT concentration (i.e. 100 ppb), microbial and photolytic removal were found as dominant factors. On the other hand, hydrogen peroxide ($H_2O_2$) concentration was found at higher level in the plant shoot than in the root probably due to occurrence of the Fenton reaction resulting in PPCPs removal.

Performance Evaluation of the Multistage Soil Washing Efficiency for Remediation of Mixed-contaminated Soil with Oil and Heavy Metals (유류/중금속 복합오염토양 정화를 위한 다단 토양세척 효율평가)

  • Kim, Daeho;Park, Kwangjin;Cho, Sungheui;Kim, Chikyung
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.2
    • /
    • pp.33-40
    • /
    • 2017
  • In typical remediation practices, separate washing systems have to be applied to clean up the soils contaminated with both oil and heavy metals. In this study, we evaluated the efficiency of successive two-stage soil washing in removal of mixed-contaminants from soil matrix. Two-stage soil washing experiments were conducted using different combinations of chemical agent: 1) persulfate oxidation, followed by organic acid washing, and 2) Fenton oxidation, followed by inorganic acid washing. Persulfate oxidation-organic acid washing efficiently removed both organic and inorganic contaminants to meet the regulatory soil quality standard. The average removal rates of total petroleum hydrocarbons (TPH), Cu, Pb, and Zn were 88.9%, 82.2%, 77.5%, and 66.3% respectively, (S/L 1:10, reaction time 1 h, persulfate 0.5 M, persulfate:activator 3:1, citric acid 2 M). Fenton oxidation-inorganic acid washing also gave satisfactory performances to give 89%, 80.9%, 87.1%, and 67.7% removal of TPH, Cu, Pb, and Zn, respectively (S/L 1:10, reaction time 1 hr, hydrogen peroxide 0.3 M, hydrogen peroxide:activator 5:1, inorganic acid 1 M).

Oxidative Modification of Cytochrome c by Hydrogen Peroxide

  • Kim, Nam Hoon;Jeong, Moon Sik;Choi, Soo Young;Kang, Jung Hoon
    • Molecules and Cells
    • /
    • v.22 no.2
    • /
    • pp.220-227
    • /
    • 2006
  • Oxidative alteration of mitochondrial cytochrome c has been linked to disease and is one of the causes of proapoptotic events. We have investigated the modification of cytochrome c by $H_2O_2$. When cytochrome c was incubated with $H_2O_2$, oligomerization of the protein increased and the formation of carbonyl derivatives and dityrosine was stimulated. Radical scavengers prevented these effects suggesting that free radicals are implicated in the $H_2O_2$-mediated oligomerization. Oligomerization was significantly inhibited by the iron chelator, deferoxamine. During incubation of deoxyribose with cytochrome c and $H_2O_2$, damage to the deoxyribose occurred in parallel with the release of iron from cytochrome c. When cytochrome c that had been exposed to $H_2O_2$ was analyzed by amino acid analysis, the tyrosine, histidine and methionine residues proved to be particularly sensitive. These results suggest that $H_2O_2$-mediated cytochrome c oligomerization is due to oxidative damage resulting from free radicals generated by a combination of the peroxidase activity of cytochrome c and the Fenton reaction of free iron released from the oxidatively-damaged protein.

Effect of pH on the Iron Autoxidation Induced DNA Cleavage

  • Kim, Jong-Moon;Oh, Byul-Nim;Kim, Jin-Heung;Kim, Seog-K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1290-1296
    • /
    • 2012
  • Fenton reaction and iron autoxidation have been debated for the major process in ROS mediated DNA cleavage. We compared both processes on iron oxidation, DNA cleavage, and cyclic voltammetric experiment at different pHs. Both oxidation reactions were preferred at basic pH condition, unlike DNA cleavage. This indicates that iron oxidation and the following steps probably occur separately. The ROS generated from autoxidation seems to be superoxide radical since sod exerted the best inhibition on DNA cleavage when $H_2O_2$ was absent. In comparison of cyclic voltammograms of $Fe^{2+}$ in NaCl solution and phosphate buffer, DNA addition to phosphate buffer induced significant change in the redox cycle of iron, indicating that iron may bind DNA as a complex with phosphate. Different pulse voltammogram in the presence of ctDNA suggest that iron ions are recyclable at acidic pH, whereas they may form an electrically stable complex with DNA at high pH condition.

Analogue Substrate Cometabolism by Chemical Oxidation of Recalcitrant PAHs (난분해 PAHs의 화학적산화에 의한 유사기질동시대사)

  • 류선정;박갑성
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.3
    • /
    • pp.87-92
    • /
    • 1998
  • The effect of chemically oxidized intermediates of Polynuclear Aromatic Hydrocarbon (PAH) compounds on the degradation of the parent PAHs was characterized and evaluated for the context of cooxidation. Anthracene and pyrene exhibited extensive degradation (mean percent removal of 57.5%) after 28 days of incubation by introducing the Fenton oxidation intermediate of the PAH compounds, while unoxidized anthracene and pyrene exhibited 12.5% removal The chemical oxidation products can serve as a structually similar analogue substrates for a consortia of soil microorganisms and as a metabolic intermediates in the biodegradation sequence of the parent PAH compounds. These results may be interpreted in the context of cooxidation mechanism whereby high recalcitrant PAH compounds are biodegraded in the soil and suggest a potential tool for bioremediation of PAHs contaminated soils and protection of groundwater.

  • PDF

3차원 토양 실험장치에서 동전기-펜턴 공정의 전기삼투흐름 모사

  • 박지연;김상준;이유진;기대정;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.158-161
    • /
    • 2003
  • Removal of phenanthrene by electrokinetic method combined with Fenton-like process was studied in a model system. The scale of reactor was 100cm in length, 100cm in width, and 70cm in height. The distance between electrodes was 70cm. Indonesia kaoline was selected as a model soil. When constant voltage of 100 V was applied to this system, current decreased from 200 mA to 100 mA for 14 days. Total accumulated EOF was about 55,000 mL. The concentration of phenanthrene near anode was very low because direction of electroosmosis was from anode to cathode and hydrogen peroxide was supplied to anode reservoir. Phenanthrene concentration was increased as the location was far from anode because hydrogen peroxide was gradually decomposed and then the rate of hydroxyl radical production was decreased.

  • PDF

Reduction of Carbon Tetrachloride at Different pHs in Pyrolusite Catalyzed Fenton-like reduction (Pyrolusite으로 촉매화된 펜톤유사반응에서 pH변화에 따른 사염화탄소(CT)의 환원분해)

  • 김상민;공성호;김용수;허정욱
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.231-234
    • /
    • 2002
  • According to recent investigations regarding Fenton-like reaction, it was reported that there was a key factor to decompose organic materials by not only the hydoroxyl radical but also several reductants which were superoxide anion and hydroperoxide anion. This research was focused on an investigation of the decomposition of carbon tetrachloride(CT) by reductants which were generated by pyrolusite with hydrogen peroxide. Generally, CT decomposition rate increased with raising pH values. Especially,, CT was decomposed over 60 percent by 10,000 ppm of hydrogen peroxide within 10 minutes in neutral condition. In addition, the decomposition of chlorinated compounds would be accelerated in alkaline condition, even with low concentration of hydrogen peroxide.

  • PDF