• Title/Summary/Keyword: Fenton

Search Result 342, Processing Time 0.025 seconds

The applications of ozone-based advanced oxidation processes for wastewater treatment: A review

  • Hussain, Mujtaba;Mahtab, Mohd Salim;Farooqi, Izharul Haq
    • Advances in environmental research
    • /
    • v.9 no.3
    • /
    • pp.191-214
    • /
    • 2020
  • The rise in population and industrialization accounts for the generation of a huge amount of wastewaters. The treatment of this wastewater is obligatory to safeguard the environment and various life forms. Conventional methods for high strength wastewater treatment coming out to be ineffective. Advanced oxidation processes (AOPs) for such wastewater treatment proved to be very effective particularly for the removal of various refractory compounds present in the wastewater. Ozone based AOPs with its high oxidizing power and excellent disinfectant properties is considered to be an attractive choice for the elimination of a large spectrum of refractory compounds. Furthermore, it enhances the biodegradability of wastewaters after treatment which favors subsequent biological treatments. In this review, a detailed overview of the AOPs (like the Fenton process, photocatalysis, Electrochemical oxidation, wet air oxidation, and Supercritical water oxidation process) has been discussed explicitly focusing on ozone-based AOPs (like O3, O3/H2O2, O3/UV, Ozone/Activated carbon process, Ozone/Ultrasound process, O3/UV/H2O2 process). This review also comprises the involved mechanisms and applications of various ozone-based AOPs for effective municipal/industrial wastewaters and landfill leachate treatment. Process limitations and rough economical analysis were also introduced. The conclusive remarks with future research directions also underlined. It was found that ozonation in combination with other effective AOPs and biological methods enhances treatment efficacies. This review will serve as a reference document for the researchers working in the AOPs field particularly focusing on ozone-based AOPs for wastewater treatment and management systems.

Decomposition of Hydrogen Peroxide in Fenton Systems (펜톤 시스템에서의 과산화수소 분해연구)

  • Mok, Young-Sun;Jo, Jin-Oh;Kim, Seok-Tae;Jeong, Woo-Tae;Kang, Duk-Won;Rhee, Byong-Ho;Kim, Jin-Kil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.68-73
    • /
    • 2007
  • In this study, we investigated the decomposition of highly concentrated hydrogen peroxide in the range of 1.04-2.55 M by transition metal ion catalysts such as $Fe^{2+}$ and $Cu^{2+}$. The effect of metal ion concentration on the decomposition of hydrogen peroxide was examined experimentally, and the decomposition rate constants were determined by combining the experimental data with a theoretical approach. The rate of the decomposition of hydrogen peroxide was found to be first order with respect to its concentration. The decomposition rate constant was able to be treated as a linear function of the initial metal ion concentration. The validity of the decomposition rate constants determined was verified by good agreements between the calculated and experimental results.

Alaternin and Emodin with Hydroxyl Radical inhibitory and/or Scavenging Activities and Hepatoprotective Activity on Tacrine-Induced Cytotoxicity in HepG2 Cells

  • Jung, Hyun-Ah;Chung, Hae-Young;Takaka, Yokezawa;Kim, Youn-Chul;Hyun, Sook-Kyung;Choi, Jae-Sue
    • Archives of Pharmacal Research
    • /
    • v.27 no.9
    • /
    • pp.947-953
    • /
    • 2004
  • The antioxidative and hepatoprotective potentials of two anthraquinones, alaternin (2-hydroxy-emodin) and emodin, to scavenge and/or inhibit hydroxyl radicals generated by the Fenton reaction and to protect tacrine-induced cytotoxicity in human liver derived HepG2 cells were evaluated, respectively. The inhibitory activity on hydroxyl radical generated in a cell-free chemical system (FeSO$_4$/$H_2O$$_2$) was investigated by a fluorescence spectrophotometer using a highly fluorescent probe, 2$^1$,7$^1$-dichlorofluorescein. The hydroxyl radical scavenging activity was determined by electron spin resonance spectroscopy using 5,5-dimethy-1-pyrroline-N-oxide as hydroxyl radicals trapping agents. Tacrine-induced HepG2 cell toxicity was determined by a 3-[4,5-dimethylthiazole-2yl]-2,5-diphenyltertrazolium bromide assay. Although the scavenging activity of alaternin on hydroxyl radical was similar to that of emodin in dose-dependent pat-terns, the inhibitory activity exhibited by the former on hydroxyl radical generation was stron-ger than that of the latter, with $IC_{50}$/ values of 3.05$\pm$0.26 $\mu$M and 13.29$\pm$3.20 $\mu$M, respectively. In addition, the two anthraquinones, alaternin and emodin showed their hepatoprotective activ-ities on tacrine-induced cytotoxicity, and the EC$_{50}$ values were 4.02 11M and 2.37 $\mu$M, respec-tively. Silymarin, an antihepatotoxic agent used as a positive control exhibited the EC$_{50}$ value of 2.00 $\mu$M. These results demonstrated that both alaternin and emodin had the simultaneous antioxidant and hepatoprotective activities.ies.

Antioxidant Activities and Phenolic Compounds Composition of Extracts from Mulberry (Morus alba L.) Fruit

  • Bang, In-Soo;Park, Hee-Yong;Yuh, Chung-Suk;Kim, Ae-Jung;Yu, Chang-Yeon;Ghimire, Bimal;Lee, Han-Shin;Park, Jae-Gun;Choung, Myoung-Gun;Lim, Jung-Dae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.2
    • /
    • pp.120-127
    • /
    • 2007
  • The objective of this research was to evaluate the ability of water and ethanol extracts from mulberry fruit (Morus alba L.) to influence the inhibitory activity of angiotensin converting enzyme (ACE) and xanthine oxidase(XOase). The total phenol contents and sixteen phenolic compounds were investigated in water and ethanol extracts. In order to understand the factors responsible for the potent antioxidant and antihypertensive ability of mulberry, it has been evaluated for anti-oxidative activity using Fenton's reagent/ethyl linoleate system and for free radical scavenging activity using the 1,1-diphenyl-2-picryl hydrazyl free radical generating system. The total phenol contents and total of phenolic compounds in ethanol extract showed higher levels than water extract in mulberry fruit six phenolic compounds (chlorogenic acid, narigin, syringic acid, quercetin, naringenin, kampferol) has a higher individual phenolic compound content in the 60% ethanol extraction than 80% ethanol extract. The inhibitory activity on angiotensin converting enzyme (ACE) were highest in 80% ethanol extract (9.0%). Also, activity of xanthine oxidase(XOase) inhibition appeared highest in 80% ethanol extracts and correlated well with the total phenolic content, which was modulated by the concentration of individual phenolic compounds. This result revealed, that strong biological activity was caused by specific phenol compound contents. Utilization of water and ethanol extracts from mulberry fruit are expected to be good candidate for development into source of free radical scavengers and anti-hypertentive activity

Screening of antioxidant and antimicrobial activities of Caesalpinia bonducella Flem., leaves (Caesalpiniaceae)

  • Gupta, Malaya;Mazumdar, UK;Kumar, Ramanathan Sambath;Gomathi, Periyasamy;Rajeshwar, Y.;Kumar, T. Siva
    • Advances in Traditional Medicine
    • /
    • v.4 no.3
    • /
    • pp.197-209
    • /
    • 2004
  • The study was aimed at evaluating the antioxidant and antimicrobial activities of methanol extract of Caesalpinia bonducella leaves (MECB) (Family: Caesalpiniaceae). The effect of MECB on antioxidant activity, reducing power, free radical scavenging (DPPH radical, nitric oxide radical, superoxide anion radical, hydroxyl radical and hydrogen peroxide radical scavenging), total phenolic content and antimicrobial activities were studied. The antioxidant activity of MECB increased in a dose dependent manner. About 50, 100, 250 and 500 g of MECB showed 53.4, 61.2, 69.1 and 76.2 % inhibition respectively on peroxidation of linoleic acid emulsion. Like antioxidant activity, the effect of MECB on reducing power increased in a dose dependent manner. The free radical scavenging activity of MECB was determined by DPPH radical scavenging method. The potency of this activity was increased with increased amount of extract. MECB was found to inhibit the nitric oxide radicals generated from sodium nitroprusside $(IC_{50}\;=\;102.8\;g/ml)$ whereas the $IC_{50}$ value of curcumin was 20.4 g/ml. Moreover, the MECB was found to scavenge the superoxide generated by photoreduction of Riboflavin. MECB was also found to inhibit the hydroxyl radical generated by Fenton reaction, where the $IC_{50}$ value is 104.17 g/ml compared with catechin 5 g/ml, which indicates the antioxidant activity of MECB. The MECB capable of scavenging hydrogen peroxide in a concentration-dependent manner. The amounts of total phenolic compounds were also determined. Antimicrobial activities of MECB were carried out using disc diffusion methods with five Gram positive, four Gram negative and four fungal species. The results obtained in the present study indicate that MECB leaves are potential source of natural antioxidant and antimicrobial agents.

Comparison of Hydroxyl Radical, Peroxyl Radical, and Peroxynitrite Scavenging Capacity of Extracts and Active Components from Selected Medicinal Plants

  • Kwon, Do-Young;Kim, Sun-Ju;Lee, Ju-Won;Kim, Young-Chul
    • Toxicological Research
    • /
    • v.26 no.4
    • /
    • pp.321-327
    • /
    • 2010
  • The ability of 80% ethanol extracts from five medicinal plants, Aralia continentalis, Paeonia suffruticosa, Magnolia denudata, Anemarrhena asphodeloides, and Schizonepeta tenuifolia, to neutralize hydroxyl radical, peroxyl radical and peroxynitrite was examined using the total oxyradical scavenging capacity (TOSC) assay. Peroxyl radical was generated from thermal homolysis of 2,2'-azobis(2-methylpropionamidine) dihydrochloride (ABAP); hydroxyl radical by an iron-ascorbate Fenton reaction; peroxynitrite by spontaneous decomposition of 3-morpholinosydnonimine N-ethylcarbamide (SIN-1). The oxidants generated react with $\alpha$-keto-$\gamma$-methiolbutyric acid (KMBA) to yield ethylene, and the TOSC of the substances tested is quantified from their ability to inhibit ethylene formation. Extracts from P. suffruticosa, M. denudata, and S. tenuifolia were determined to be potent peroxyl radical scavenging agents with a specific TOSC (sTOSC) being at least six-fold greater than that of glutathione (GSH). These three plants also showed sTOSCs toward peroxynitrite markedly greater than sTOSC of GSH, however, only P. suffruticosa revealed a significant hydroxyl radical scavenging capacity. Seven major active constituents isolated from P. suffruticosa, quercetin, (+)-catechin, methyl gallate, gallic acid, benzoic acid, benzoyl paeoniflorin and paeoniflorin, were determined for their antioxidant potential toward peroxynitrite, peroxyl and hydroxyl radicals. Quercetin, (+)-catechin, methyl gallate, and gallic acid exhibited sTOSCs 40~85 times greater than sTOSC of GSH. These four components also showed a peroxynitrite scavenging capacity higher than at least 10-fold of GSH. For antioxidant activity against hydroxyl radical, methyl gallate was greatest followed by gallic acid and quercetin. Further studies need to be conducted to substantiate the significance of scavenging a specific oxidant in the prevention of cellular injury and disease states caused by the reactive free radical species.

Transgenic Strategy to Improve Stress Resistance of Crop Plants

  • Horvath, Gabor V.;Oberschall, Attila;Deak, Maria;Sass, Laszlo;Vass, Imre;Barna, Balazs;Kiraly, Zoltan;Hideg, Eva;Feher, Attila
    • Journal of Plant Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.61-68
    • /
    • 1999
  • Rapid accumulation of reactive oxygen species (ROS) and their toxic reaction products with lipids and proteins significantly contributes to the damage of crop plants under biotic and abiotic stresses. We have identified several stress activated alfalfa genes, including the gene of the alfalfa ferritin and a novel NADPH-dependent aldose/aldehyde reductase enzyme. Transgenic tobacco plants that synthesize alfalfa ferritin in vegetative tissues-either in its processed form in chloroplast or in the cytoplasmic non-processed form-retained photosynthetic function upon free radical toxicity generated by paraquat treatment and exhibited tolerance to necrotic damage caused by viral and fungal infections. We propose that by sequestering intracellular iron involved in generation of the very reactive hydroxyl radicals through a Fenton reaction, ferritin protects plant cells from oxidative damage. Our preliminary results with the other stress-inducable alfalfa gene (a NADPH-dependent aldo-keto reductase) indicate, that the encoded enzyme may play role in the stress response of the plant cells. These studies reveal new pathways in plants that can contribute to the increased stress resistance with a potential use in crop improvement.

  • PDF

Antioxidant Property and Inhibitory Effects of an Water Extract of Hwang-Ryun-Chung-Sim-Um on the Acetylcholinesterase (황련청심음(黃連淸心飮)의 항산화 및 AChE 억제 효과에 관한 연구)

  • Yoo, Jong-Ho;Lee, Sang-Taek;Han, Yun-Seung;Kim, Geun-Woo;Koo, Byung-Soo;Kim, Hun-Il
    • Journal of Oriental Neuropsychiatry
    • /
    • v.17 no.1
    • /
    • pp.1-16
    • /
    • 2006
  • Objective: An water extract of the Hwang-Ryun-Chung-Sim-Um (HRC) was assessed to determine the mechanisms of its antioxidant activity. In addition, the HRC was examined in vitro for the inhibitory effect on the acetylcholinesterse (AChE). Methods: The HRC exhibited a concentration-treatment; scavenging ${\alpha},{\alpha}-diphenyl-{\beta}-picrylhydrazyl$ (DPPH) radical, linoleic acid oxidation in a thiocyanate assay system, hydroxyl radical-induced DNA nicking. We investigated mRNA levels such as catalase activity, superoxide-dismutase and glutathione peroxidase. The water extract of HRC showed inhibitory effect on AChE activity. Result: The HRC extract showed dose-dependent free radical scavenging activity, including DPPH radicals and hydroxyl radicals, using different system. The HRC was also found to be effective in protecting plasmid DNA against the strand breakage induced by Hydroxyl radicals in Fenton's reaction mixture. Futhermore, catalase mRNA expression levels increased, but SOD1 and MnSOD was not expressed. HRC in a various concentration-dependent decreased AChE mRNA levels and inhibitory effect showed AChE. Conclusion: According to the above results, it is supposed that HRC is applicable to the Dementia-type of Alzheimer clinically.

  • PDF

Characterization of Fe-ACF/TiO2 composite and photocatalytic activity for MB Solution under visible light (Fe-ACF/TiO2 복합체의 특성화와 가시광선조건에서 MB 용액의 광촉매활성)

  • Zhang, Kan;Meng, Ze-Da;Oh, Won-Chun
    • Analytical Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.225-232
    • /
    • 2010
  • In present study, a conventional sol-gel method was used to prepare Fe-ACF/$TiO_2$ composites, a kind of composite photocatalysts, whose capability was evaluated by degrading methylene blue (MB) solution. The particle size, surface structure, crystal phase and elemental identification of the composites prepared were characterized by BET, SEM, XRD and EDX, respectively. The spectra of MB concentration degraded under visible light were obtained by UV/Vis spectrophotometer. These obtained spectra demonstrated the photocaltalytic activity from removal concentrations of MB. It was considered that these photonic activities are induced by a strong synergetic reaction among ACF, $TiO_2$ and Fe in the composite photocatalysts under visible light.

Acute Pulmonary Responses in Vivo to Silica Complexed with $H^+$, $Zn^{2+}$, or $Fe^{3+}$

  • Lee, Ji-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.2
    • /
    • pp.183-189
    • /
    • 1999
  • This investigation is to determine whether the surface complexation of iron influence acute pulmonary responses induced by silica. For this study, three varieties of cation complexed silica were used: $silica-H^+,\;-Zn^{2+},\;and\;-Fe^{3+},$ since the first two are not active in the transport of electrons and generate little free radicals relative to the dust with the surface iron. Rats (270 to 280 g) were intratracheally (IT) instilled with saline, $silica-H^+,\;-Zn^{2+},\;or\;-Fe^{3+}$(5 mg in 0.5 ml saline). After 4 h, cell number, type, and differentiation were analysed in the bronchoalveolar lavage cells, and the levels of lactate dehydrogenase (LDH) and total protein were determined in the lavage fluid. In addition, bronchoalveolar lavage cells were cultured, and nitric oxide production was measured using nitrate assay. Inducible nitric oxide synthase (iNOS) mRNA in the bronchoalveolar lavage cells was also determined by northern blot analysis. Differential counts of the lavage cells showed that red blood cells were increased by 9-, 8-, and 13-fold and total leukocytes (lymphocytes plus polymorphonuclear neutrophils) by 48-, 36-, and 33-fold, following IT $silica-H^+,\;-Zn^{2+},\;and\;-Fe^{3+},$ respectively compared with the saline group. Meanwhile, there were no significant differences in red blood cells and total leukocytes among any of the cation complexed silica groups. The levels of LDH and total protein in the lavage fluid were significantly increased by 3- to 4-fold. However, compared among these silica groups, $Fe^{3+}$? complexation did not significantly change the LDH activity and total protein. NO production in cultured bronchoalveolar lavage cells was elevated by 2-fold, following IT any of the silica treatments compared with the saline group. Furthermore, the steady-state levels of iNOS mRNA in the lavage cells were greatly increased. There were any differences in iNOS mRNA expression among the silica-treated groups as with NO production. These findings suggest that surface complexed iron may not influence the acute pulmonary responses resulted from 4h exposure to silica.

  • PDF