• Title/Summary/Keyword: Femoral stem

Search Result 51, Processing Time 0.025 seconds

Measures of micromotion in cementless femoral stems-review of current methodologies

  • Solitro, Giovanni F;Whitlock, Keith;Amirouche, Farid;Santis, Catherine
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.3 no.2
    • /
    • pp.85-104
    • /
    • 2016
  • Stability and loosening of implanted femoral stems in Total Hip Replacement have been well established as barriers to the primary concerns of osseointegration and long term implant survival. In-vitro experiments and finite element modeling have for years been used as a primary tool to assess the bone stem interface with variable methodologies leading to a wide range of micromotion, interference fit and stress shielding values in the literature. The current study aims to provide a comprehensive review of currently utilized methodologies for in-vitro mechanical testing as well as finite element modeling of both micromotion and interference of implanted femoral stems. A total of 12 studies detailed in 33 articles were selected for inclusion. Experimental values of micromotion ranged from 12 to $182{\mu}m$ while finite element analysis reported a wider range from 2.74 to $1,277{\mu}m$. Only two studies were found that modeled bone/implant contact with consideration for interference fit. In studies evaluating stem micromotion in THA, the reference surface at the bone/stem interface should be well defined. Additionally, the amount of penetration considered should be disclosed and associated with bone density and roughness.

Biomechanical Finite Element Analysis of Bone Cemented Hip Crack Initiation According to Stem Design

  • Kim, Byeong-Soo;Moon, Byung-Young;Park, Jung-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2168-2177
    • /
    • 2006
  • The purpose of this investigation was to determine the specific fracture mechanics response of cracks that initiate at the stem-cement interface and propagate into the cement mantle. Two-dimensional finite element models of idealized stem-cement-bone cross-sections from the proximal femur were developed for this study. Two general stem types were considered; Rectangular shape and Charnley type stem designs. The FE results showed that the highest principal stress in the cement mantle for each case occurred in the upper left and lower right regions adjacent to the stem-cement interface. There was also a general decrease in maximum tensile stress with increasing cement mantle thickness for both Rectangular and Charnley-type stem designs. The cement thickness is found to be one of the important fatigue failure parameters which affect the longevity of cemented femoral components, in which the thinner cement was significantly associated with early mechanical failure for shot-time period.

Management of Severe Bone Defects in Femoral Revision following Total Hip Arthroplasty

  • Yicheng Li;Li Cao
    • Hip & pelvis
    • /
    • v.36 no.2
    • /
    • pp.101-107
    • /
    • 2024
  • Treatment of femoral bone defects continues to be a challenge in revision total hip arthroplasty (THA); therefore, meticulous preoperative evaluation of patients and surgical planning are required. This review provides a concise synopsis of the etiology, classification, treatment strategy, and prosthesis selection in relation to femoral bone loss in revision THA. A search of literature was conducted for identification of research articles related to classification of bone loss, management of femoral revision, and comparison of different types of stems. Findings of a thorough review of the included articles were as follows: (1) the Paprosky classification system is used most often when defining femoral bone loss, (2) a primary-length fully coated monoblock femoral component is recommended for treatment of types I or II bone defects, (3) use of an extensively porous-coated stem and a modular fluted tapered stem is recommended for management of types III or IV bone defects, and (4) use of an impaction grafting technique is another option for improvement of bone stock, and allograft prosthesis composite and proximal femoral replacement can be applied by experienced surgeons, in selected cases, as a final salvage solution. Stems with a tapered design are gradually replacing components with a cylindrical design as the first choice for femoral revision; however, further confirmation regarding the advantages and disadvantages of modular and nonmodular stems will be required through conduct of higher-level comparative studies.

Three-Dimensional Finite Element Analysis of Micromotion of the Straight and the Curved Femoral Stem in Cementless Hip Arthroplasty (인공고관절 직선형 대퇴 stem과 곡선형 대퇴 stem의 미세운동비교 - FEM 3차원 모델을 이용한 분석 -)

  • Kim, S.K.;Chae, S.W.;Jeong, J.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.245-248
    • /
    • 1997
  • Excessive stress on the bone-stem interface may cause local micromotion that could produce midthigh pain, interface bone resorption and prevent bony ingrowth. It is important for clinician and prosthetic designer to develop an understanding of the load transfer mechanism, its associated stress pattern and its relationships with the particular mechanical characteristics of the femoral stem designs. Finite element method (FEM) is preeminently suited to provide information in this respect. The authors developed 3-dimensional numerical finite element models implanted with the straight stem which is composed of total 1170 elements of 8 nodes and with the curved stem which is composed of total 885 elements of 8 node, and analysed the relative micromotions between the straight stem and the curved stem in immediate postoperative stage of an uncemented total hip replacement in load simulating the single leg stance. The results showed that the rotational displacement was occupied over 90% of total micromotion in both types of stem and was peak at the proximal medial portion of the stem, but markedly less distally. The curved stem was more stable especially in terms of rotational stability. It is recommended that surgeons do not allow the patient weight bearing until bony ingrowth was achieved. In the future more attention should be drawn to increase initial rotational stability of the two types of femoral stem to prevent loosening from excessive micromotion.

  • PDF

Decision-Making and Principle of Management in Periprosthetic Femoral Fracture after Total Hip Arthroplasty (고관절 치환술 후 삽입물의 안정성 판단과 대퇴 삽입물 주위 골절의 치료 원칙)

  • Kim, Beom-Soo;Lee, Kyung-Jae;Min, Byung-Woo
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.3
    • /
    • pp.200-207
    • /
    • 2021
  • Periprosthetic femoral fractures remain as one of the most challenging complications following total hip arthroplasty. A thorough clinical and radiographic evaluation, precise classification, and understanding of modern management principles are essential to obtain optimal results for these fractures. The Vancouver classification system is a simple, effective, and reproducible method for the planning treatments of these injuries. The fractures associated with a stable femoral stem can be treated effectively with osteosynthesis, but periprosthetic femoral fractures associated with a loose stem require revision arthroplasty. This paper describes the principle of the treatment of patients with periprosthetic femoral fractures and how to assess the stability of the femoral stem.

Surgeon's Experience and Accuracy of Preoperative Digital Templating in Primary Total Hip Arthroplasty

  • Maria Surroca;Silvia Miguela;Agusti Bartra-Ylla;Jorge H. Nunez;Francesc Angles-Crespo
    • Hip & pelvis
    • /
    • v.36 no.2
    • /
    • pp.129-134
    • /
    • 2024
  • Purpose: Preoperative planning has become essential in performance of total hip arthroplasty (THA). However, data regarding the effect of the planner's experience on the accuracy of digital preoperative planning is limited. The objective of this study was to assess the accuracy of digital templating in THA based on the surgeon's experience. Materials and Methods: A retrospective study was conducted. An analysis of 98 anteroposterior pelvic radiographs, which were individually templated by four surgeons (two hip surgeons and two orthopaedic residents) using TraumaCad® digital planning, was performed. A comparison of preoperatively planned sizes with implanted sizes was performed to evaluate the accuracy of predicting component size. The results of preoperative planning performed by hip surgeons and orthopaedic residents were compared for testing of the planner's experience. Results: Femoral stem was precisely predicted in 32.4% of cases, acetabular component in 40.3%, and femoral offset in 76.7%. Prediction of cup size showed greater accuracy than femoral size among all observers. No differences in any variable were observed among the four groups (acetabular cup P=0.07, femoral stem P=0.82, femoral offset P=0.06). All measurements showed good reliability (intraclass correlation coefficient [ICC] acetabular cup: 0.76, ICC femoral stem: 0.79). Conclusion: The results of this study might suggest that even though a surgeon's experience supports improved precision during the planning stage, it should not be restricted only to surgeons with a high level of experience. We consider preoperative planning an essential part of the surgery, which should be included in training for orthopaedics residents.

Evaluation of the Femoral Stem Implant in Canine Total Hip Arthroplasty: A Cadaver Study

  • Cho, Hyoung Sun;Kwon, Yonghwan;Kim, Young-Ung;Kang, Jin-Su;Lee, Kichang;Kim, Namsoo;Kim, Min Su
    • Journal of Veterinary Clinics
    • /
    • v.36 no.1
    • /
    • pp.53-61
    • /
    • 2019
  • Total hip arthroplasty (THA) is a successful surgical treatment for both patients with chronical lameness and dogs who are nonresponsive to medical treatments, providing excellent joint function for returning dogs to the normal gait in 80% to 98% of hip dysplasia (HD) patients. The THA surgical implant system manufactured by BioMedtrix and Kyon are today widely accepted. When comparing the BioMedtrix biological fixation (BFX) system to the BioMedtrix cemented fixation (CFX) system, the many advantages of BFX, which include longer potential implant life, decreased risk of postoperative or later infection, and better implant stability, become evident. However, BFX implies a greater risk of femoral fracture during reaming and requires a more precise surgical technique to achieve good implant fit, given the press-fit nature of cementless THA. The purposes of this study are to both describe the mistakes and complications during stem implantation for beginner surgeons with both the BFX and the CFX systems and to document the initial result of 12 implantations in canine cadavers. Given the detailed evaluations of 3 specialists, who are Diplomate American College of Veterinary Surgeons (DACVS), only 3 of 11 stems were appropriately sized. Specifically, 6 stems were anteverted rather than being retroverted; further, although 7 stems were coaxial with the femoral long axis in the frontal plane, the other stems were in the varus at the frontal plane, with the proximal medial stem adjacent to the medial femoral cortex. Moderate angulation from the cranial to the caudal directions was found in 4 cases in the sagittal plane. Additionally, 1 case of femoral fissure and 1 case of perforated femoral cortex were reported. It is not easy for surgeons performing cementless THA for the first time to achieve a good result, even though they completed an educational course about it and given that catastrophic complications often occurred during early surgical clinical cases. Therefore, ex-vivo studies are sincerely required to get an expertise by rehearsing the preparation of the femoral envelop in isolated bones. Further studies should be conducted to achieve both highly accurate implant size and correct orientation during the preoperative planning. Additionally, surgeons' learning curve should be examined in future investigations.

A Three-Dimensional Finite Element Study of Interface Micromotion in a Non-Cement Total Hip stem (FEM 3차원 모델을 이용한 인공관절 대퇴 Stem 경계면의 미세운동 분석)

  • Kim, Sung-Kon;Choi, Hyung-Yun;Chae, Soo-Won
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.61-70
    • /
    • 1996
  • In cementless total hip arthroplasty(THA), an initial stability of the femoral component is mandatory to achieve bony inyowth and secondary long term fixation. Primary stability of the femoral component can be obtained by minimizing the magnitude of relative micromotions at bone stem interface. An accurate evaluation of interf'ace micromotion and stress/strain fields in the bone-implant system may be relevant for better understanding of clinical situations and improving THA design. Recently finite element method(FEM) was introduced in'orthopaedic research field due to its unique capacity to evaluate stress in structure of complex shape, loading and material behavior. The authors developed the 3-dimensional finite element model of proximal femur with $Multilock^{TM}$ stem of 1179 blick elements to analyse the micromotions and mechanical behaviors at the bone-stem inteface in early post-operative period for the load simulating single leg stance. The results indicates that the values of relative motion for this well fit stem were $150{\mu}m$ in maximum $82{\mu}m$ in minimum and the largest relative motion was developed in medial region of Proximal femur and in anterior-posterior direction. The motion in the proximal bone was much greater than in the distal bone and the stress pattern showed high stress concentration on the cortex near the tip of the stem. These findings indicate that the loading on the hip joint in the early postoperative situation before achieving bony ingrowth could produce large micromotion of $150{\mu}m$ and clinicaly non-cemented THA patient should not be allowed weight bearing strictly early in the postoperative period.

  • PDF

Periprosthetic Fracture around a Cemented Stem in Total Hip Arthroplasty

  • Jun-Young Heu;Ju-Yeong Kim;Se-Won Lee
    • Hip & pelvis
    • /
    • v.34 no.3
    • /
    • pp.140-149
    • /
    • 2022
  • The increase in the number of primary total hip arthroplasties that will be performed over the next several decades will lead to an increase in the incidence of periprosthetic fractures around the femoral stem. A search of targeted articles was conducted using on-line databases of PubMed (National Library of Medicine) and articles were obtained from January 2008 to November 2021. Reliable prediction of treatment can be achieved using the Vancouver classification; internal fixation is indicated in fractures involving a stable implant and revision arthroplasty is indicated in those with unstable prostheses. To the best of our knowledge, relatively fewer studies regarding periprosthetic proximal femur fractures of cemented stems have been reported. The focus of this review is on the risk factors and strategies for treatment of these fractures for periprosthetic femoral fractures around a cemented hip arthroplasty.