• Title/Summary/Keyword: Feedwater Control System

Search Result 38, Processing Time 0.024 seconds

Development of Fuzzy Expert System for Fault Diagnosis in a Drum-type Boiler System of Fossil Power Plant (화력 발전소 드럼형 보일러 시스템의 고장 진단을 위한 퍼지 전문가 시스템의 개발)

  • ;;Zeungnam Bien
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.10
    • /
    • pp.53-66
    • /
    • 1994
  • In this paper, a fuzzy expert system is developed for fault diagnoisis of a drum-type boiler system in fossil power plants. The develped fuzzy espert system is composed of knowledge base, fuzzification module, knowledge base process module, knowledge base management module, inference module, and linguistic approximation module. The main objective of the fuzzy expert system is to check the states of the system including the drum level and detect faults such as the feedwater flow sensor fault, feedwater flow control valve fault, and water wall bube rupture. The fuzzy expert system diagnoses faults using process values, manipulated values, and knowledge base which is built via interviews and questionaries with the experts on the plant operations. Finally, the validity of the developed fuzzy expert system is shown via experiments using the digital simulator for boiler system is Seoul Power Plant Unit 4.

  • PDF

Investigation on Transient Vibration of Piping System to Heater in a Power Plant (발전소 가열기 급수용 배관계 이상 진동 고찰)

  • 양경현;조철환;배춘희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.975-978
    • /
    • 2004
  • There was transient vibration on the piping system from #4 heater to the deaerator in a power plant. We found it was resulted from resonance between the natural vibration of the piping system and vibration induced by flow of feedwater. We verified it would reduce vibration by increasing stiffness of the piping system. Therefore we concluded that it would be generally better to increase stiffness of the piping system to reduce vibration amplitude of 10Hz low for big sized piping systems.

  • PDF

Implementation of Performance Monitoring System for Thermal Power Plant in SIEMENS DCS (SIEMENS DCS 환경에서 화력발전소 성능감시 시스템 구현)

  • 김승민;문태선;조창호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.37-37
    • /
    • 2000
  • This paper introduces the Performance Monitoring System(PMS) in a thermal power plant. The purpose of the PMS is to offer the operator current performance information of plant which could be an index of plant status or information to improve plant efficiency. The PMS of Bukcheju thermal power plant unit #2&3 is implemented under the SIEMENS DCS which supplies about 150 function blocks for performance calculation and all measured signals. The performance of unit, boiler, turbines, feedwater heaters, condenser, airpreheaters, feedwater pumps will be monitored and updated for every 5 minutes in PMS of Bukcheju TPP.

  • PDF

Effects of Deaerator in Feedwater System on Steam Generator in Nuclear Power Plant (원자력 발전소 급수계통 탈기기가 증기발생기에 미치는 영향)

  • Choi, Young-Boo;Kim, Si-Moon;Lee, Eun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.403-405
    • /
    • 1999
  • Dissoved oxygen(DO) control by deaerator has a great effect on the integrity of S/G in nuclear power plant. The goal of this study based on the theoretical basis and the extensive surveys is to identify the effect of deaerator in feedwater system on steam generator to clear the need of installation of deaerator. In addition, this paper discusses the review to understand the mechanism of DO formation as well as removal. The conclusion is that the installation of deaerator improve the integrity of S/G and is contributed to the whole nuclear power plant safety.

  • PDF

SBLOCA AND LOFW EXPERIMENTS IN A SCALED-DOWN IET FACILITY OF REX-10 REACTOR

  • Lee, Yeon-Gun;Park, Il-Woong;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.347-360
    • /
    • 2013
  • This paper presents an experimental investigation of the small-break loss-of-coolant accident (SBLOCA) and the loss-of-feedwater accident (LOFW) in a scaled integral test facility of REX-10. REX-10 is a small integral-type PWR in which the coolant flow is driven by natural circulation, and the RCS is pressurized by the steam-gas pressurizer. The postulated accidents of REX-10 include the system depressurization initiated by the break of a nitrogen injection line connected to the steam-gas pressurizer and the complete loss of normal feedwater flow by the malfunction of control systems. The integral effect tests on SBLOCA and LOFW are conducted at the REX-10 Test Facility (RTF), a full-height full-pressure facility with reduced power by 1/50. The SBLOCA experiment is initiated by opening a flow passage out of the pressurizer vessel, and the LOFW experiment begins with the termination of the feedwater supply into the helical-coil steam generator. The experimental results reveal that the RTF can assure sufficient cooldown capability with the simulated PRHRS flow during these DBAs. In particular, the RTF exhibits faster pressurization during the LOFW test when employing the steam-gas pressurizer than the steam pressurizer. This experimental study can provide unique data to validate the thermal-hydraulic analysis code for REX-10.

Study on Noise Control for Piping System of BFP in a Power Plant (화력발전소 보일러 급수용 펌프 배관계의 이상소음 저감에 관한 연구)

  • 양경현;조철환;배춘희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.490-494
    • /
    • 2004
  • The purpose of this paper was to identify the mechanism that caused abnormal vibration and noise on the piping system connected to discharge flow of BFP(Boiler Feed water Pump) in a coal fired power plant, and to develop the device that can reduce the level of abnormal vibration and noise. Major results of this project can be summarized as follows: First, we analyzed the acoustic mode for the discharge piping of BFP to trace a path of the noise, and assumed that noise and vibration on the piping system can be related with length of pipe. Second, a minimized model of the piping system was set up to simulate abnormal vibration and noise within the specific range of operating frequencies, and as a result we confirmed that the acoustic mode affected the piping system considerably. Finally the test device which can reduce the level of abnormal noise and vibration was built to verify validity applying for the piping system. Then we concluded that the noise and vibration generated from the piping system was attributed to the acoustic resonance in piping system, and so developed new device which can reduce the level of noise and vibration under 40%. Put Abstract here.

  • PDF

Fuzzy Control Using A Modified Fuzzy Modelling (개선된 퍼지 모형화 기법에 의한 퍼지 제어)

  • Lee, Sang-Yong;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.349-352
    • /
    • 1991
  • Fuzzy modelling is a useful method when the variation of plant dynamics is large. In the fuzzy modelling by parameter identification, a new method is proposed in the part of premise parameters identification and in expanding MISO system into MIMO system. Using the proposed method, a fuzzy model of the drum boiler of the thermal power plant can be derived. In addition, feedwater control of the drum by fuzzy controller using the fuzzy model, is simulated.

  • PDF

Cybersecurity Risk Assessment of a Diverse Protection System Using Attack Trees (공격 트리를 이용한 다양성보호계통 사이버보안 위험 평가)

  • Jung Sungmin;Kim Taekyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.3
    • /
    • pp.25-38
    • /
    • 2023
  • Instrumentation and control systems measure and control various variables of nuclear facilities to operate nuclear power plants safely. A diverse protection system, a representative instrumentation and control system, generates a reactor trip and turbine trip signal by high pressure in a pressurizer and containment to satisfy the design requirements 10CFR50.62. Also, it generates an auxiliary feedwater actuation signal by low water levels in steam generators. Cybersecurity has become more critical as digital technology is gradually applied to solve problems such as performance degradation due to aging of analog equipment, increased maintenance costs, and product discontinuation. This paper analyzed possible cybersecurity threat scenarios in the diverse protection system using attack trees. Based on the analyzed cybersecurity threat scenario, we calculated the probability of attack occurrence and confirmed the cybersecurity risk in connection with the asset value.

A Development of Digital Control System for FWPT In Nuclear Power Plant (원전 급수펌프 구동용 터빈 제어시스템 개발)

  • Choi, In-Kyu;Jeong, Chang-Ki;Kim, Byoung-Chul;Kim, Jong-An;Woo, Joo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1885-1886
    • /
    • 2006
  • The thermal energy from nuclear fission is transferred to the steam generator which is a kind of a large heat exchanger. After the feedwater is injected into the steam generator and absorbs the thermal energy, it is converted into the steam. This steam goes into the turbine. The balance between the generated energy and the consumed energy is required for the nuclear power plant to be stable. For the purpose of which, the feed water, a parameter for energy transfer, should be controlled in stability. Usually, the nuclear power plants are operated in base load in the view of power system for the stability of fission system. Therefore, though there will be almost no unbalance, there can be some instability from unbalance in case of startup/shutdown or disturbance. In this case, the controllability of feedwater pump is very important for the quick recover of stability.

  • PDF

Immune Based Intelligent Tuning of the 2-DOF PID Controller for Thermal Power Plant

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.101.3-101
    • /
    • 2002
  • Contents 1 Abstract- In the thermal power plant, there are six manipulated variables; main steam flow, feedwater flow, air flow, spray flow, fuel flow, and gas recirculation flow. Therefore, the thermal power plant control system is a multi-input and output system. In the control system, the main steam temperature typically is regulated by the fuel flow rate and the spray flow rate, and the reheater steam temperature is regulated by the gas recirculation flow rate. Up to the present time, the PID controller has been used to operate this system. This paper focuses on the characteristic comparison of the PID controller, the modified 2-DOF PID Controller on the DCS, in order to design an optimal...

  • PDF