• Title/Summary/Keyword: Feedrate control

Search Result 76, Processing Time 0.027 seconds

Development of Software Interpolator for Two-Axis Contouring Control (2축 윤곽제어를 위한 소프트웨어 보간자 개발에 관한 연구)

  • 김교형;이기설
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.389-396
    • /
    • 1988
  • Microprocessor-based software DDA interpolator is developed and applied to two axis contouring control of X-Y table. Developed assembly program is composed of feedrate, linear and circular DDA interpolation routines. Reference-pulse type of open-loop stepping motor control system in which the micro-computer produces a sequence of reference pulses for each axis of motion is adopted. To test performance of the developed program, X-Y table drive system based on stepping motor and shaft encoder is designed. Conturing error of the system in linear and circular path is within .+-. 0.2mm under start stop pulse rate of stepping motor.

Fuzzy Logic Modeling and Control for Drilling of Composite Laminates ; Simulation

  • Chung, Byeong-Mook;Ye Sheng;Masayoshi Tomizuka
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.11-17
    • /
    • 2001
  • In drilling of composite laminates, it is important to minimize of reduce occurrences of delaminations. In particular, a peel -up delamination at entrance and push-up delamination at exit are common. Deleaminations may by avoided by regulating the drill thrust force can be controlled by adjusting the feedrate of the drill. Dynamics involved in drilling of composite laminates is time varying and nonlinear. In this paper, a fuzzy logic model and control strategy are proposed. Simulation results show that the fuzzy model can describe the nonlinear time-varying process well. The fuzzy controller realizes a fast rise time and a little overshoot of drilling force.

  • PDF

Cutting Force Control of a CNC Machine Using Fuzzy Theory (퍼지이론을 이용한 CNC 공작기계의 절삭력제어)

  • Noh, Sang-Hyun;Lee, Sang-Gyu;Park, Un-Hwan;Lim, Yeun-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.2
    • /
    • pp.123-130
    • /
    • 2000
  • Fuzzy control is proposed to regulate cutting force in turning operations under varying cutting conditions. The traditional linear controllers based on crisp mathematical model cannot effectively control cutting force becasue of the nonlinear dynamics of turning operations. The proposed fuzzy controller is based on operator experience and expert knowledge. The membership functions for the inputs and the output of the controller are designed. Cutting force is regulated by adjusting feedrate according to the variation of cutting conditions. The performance of the proposed controller is evaluated by experiments. The results of experiments show that the proposed fuzzy controller has a good cutting force regulation over a wide range of cutting conditions.

  • PDF

Development of Monitoring/Control System for High Productive Grinding System (생산성 향상을 위한 연삭공정의 감시.제어시스템 개발)

  • 정병철;안중환;이상우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.04a
    • /
    • pp.425-428
    • /
    • 1994
  • Non-uniform minute deformation of a cylinderical workpiece resulted from the heat treatment process prior to the grinding makes it diffeclt to control the approaching feedrate of a grinding wheelto a workpiece optimallywithout on-site detection of the grinding states in the plunge grinding. The 4-stage model of the plunge grinding process is proposed according to the state of contact between grinding wheel and workpiece ; precontact, partial contact, entire contact and spark-out. Despite of being scrious to the precision of workpiece finished, the duration of spark-out is determined empirically. The purpose of this research is to develop a monitoring/control system for saving non- production time and setting the optimal spark-out time based on sensor information in the plunge grinding using AE and ultra sonic sensor.

  • PDF

Selection of chip breaker based on the experiment (실험적 방법에 기초한 칩브레이크 선정)

  • 전준용;허만성;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.271-275
    • /
    • 1995
  • Chip control is a major problem in automatic machining process, especially in finish operation. Chip breaker is one of the important factors to be determined for the scheme of chip control. As unbroken chips are grown, there deteriorate quality of the surface roughness and process automation can be carried out. In this study, to get rid of chip curling problem while turning internal hole, optimal chip breaker is selected form the experiment. The experiment is planned with Taguchi's method that is based on the orthogonal arrary of design factor. From the respose table, cutting speed, feedrate, depth of cut, and tool geometry are major factors affecting chip formation. Then, optmal chip breaker is selected and this is verified good enough for chip control from the experiment.

  • PDF

Realtime control algorithm and hardware for machining curved surfaces (실시간 곡면 가공에 관한 제어 알고리즘 및 하드웨어 연구)

  • 정승권;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1320-1323
    • /
    • 1996
  • This paper describes an interpolation method for a parametric surface. A parametric surface is approximated to triangular mesh surfaces and then the basic paths are achieved. As the generated path is a series of linear segments, this algorithm can be easily adapted to general NC controllers. The generated paths have minimal transfer length and are gouge-free within the approximation tolerance. The problems, induced when the paths are represented by linear segments, are overcome without making any path deviation by this algorithm. This algorithm saves machining time by eliminating overdetermined tool paths and keeping the desired average feedrate, which improve productivity and lead to lower production costs.

  • PDF

Application of Taguchi Method for the Selection of Chip Breaker (칩브레이크 선정을 위한 Taguchi 방법의 적용)

  • 전준용
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.118-125
    • /
    • 1998
  • Chip control is a major problem in automatic machining process, especially in finish turning operation. In this case, chip breaker is one of the important factors to be determined. As unbroken chips are grown. these deteriorate the surface roughness. and proces automation can not be carried out. In this study to get rid of chip curling problem while turning internal hole. optimal chip breaker is selected from the experiment. The experiment is planned with Taguchi's method that is based on the orthogonal arrary of design factors. From the response table. cutting speed, feedrate, depth of cut and tool geometry turn to be major factors affecting chip formation. Then, optimal chip breaker is selected. and this is verified as good enough for chip control from the experiment.

  • PDF

Control of Identifier of Chip Form by Adjusting Feedrate Used Neural Network Algorithm (선삭에서 신경망 알고리즘에 의한 칩 형태의 인식과 제어)

  • Jun, J.U.;Ha, M.K.;Koo, Y.
    • Journal of Power System Engineering
    • /
    • v.4 no.4
    • /
    • pp.108-115
    • /
    • 2000
  • The continuous chip in turning operation deteriorates the precision of workpiece and can cause a hazardous condition to operator. Thus the chip form control becomes a very important task for reliable turning process. Using the difference of energy radiated from the chip, the chip form is identified using the neural network of supervised data. The feed mechanism is adjusted in order to break continuous chip according to the result of the chip form recognition and shows a good approach for precision turning operation.

  • PDF

DPS Board Appication for Regulation of Cutting Force under Varying Cutting Conditions during Milling Process (밀링공정중 절삭조건 변화에 따른 절삭력 추종제어를 위한 DSP보드 응용)

  • Oh, Young-Tak;Kwon, Won-Tae;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.38-46
    • /
    • 1999
  • Spindle motor current is used to estimate the cutting force indirectly and control the feed rate for the cutting force regulation. The proposed algorithm is implemented to a DSP board based hardware for the industrial application. The software to make POP terminal communicate with the DSP board and POP server is coded under Windows 95 environment. Experiments under varying cutting conditions show that the DSP board recognizes the information of installed cutting tool and cutting conditions delivered from the POP server to use them for the proper control of the feed rate. The cutting force is regulated well during machining of tapered or stepped workpiece and circular shaped workpiece as well.

  • PDF

Cutting Force Control of Turning Process Using Fuzzy Theory (퍼지이론을 이용한 선삭의 절삭력제어)

  • 노상현;정선환;김교형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.113-120
    • /
    • 1994
  • The dynamic characteristics of turning processes are complex, non-linear and time-varying. Consequently, the conventional techniques based on crisp mathematical model may not guarantee cutting force regulation. This paper presents a fuzzy controller which can regulate cutting force in turning process under varying cutting conditions. The fuzzy control rules are extablished from operator experience and expert knowledge about the process dynamics. Regulation which increases productivity and tool life is achieved by adjusting feedrate according to the variation of cutting conditions. The performance of the proposed controller is evaluated by cutting experiments in the converted conventional lathe. The results of experiments show that the proposed fuzzy controller has a good cutting force regulation capability in spite of the variation of cutting conditions.