• Title/Summary/Keyword: Feedforward Neural Network Model

Search Result 71, Processing Time 0.031 seconds

A Study on the Welding Gap Detecting Using Pattern Classification by ART2 and Fuzzy Membership Filter

  • Kim, Tae-Yeong;Kim, Gwan-Hyung;Lee, Sang-Bae;Kim, Il
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.527-531
    • /
    • 1998
  • This study introduce to the fuzzy membership filter to cancel a high frequency noise of welding current. And ART2 which has the competitive learning network classifiers the signal patterns for the filtered welding signal. A welding current possesses a specific pattern according to the existence or the size of a welding gap. These specific patterns result in different classification in comparison with an occasion for no welding gap. The patterns In each case of 1mm, 2mm, 3mm, and no welding gap are identified by the artificial neural network. These procedure is an off-line execution. In on-line execution, the identification model of neural network for the classified pattern is located on ahead of the welding plant. And when the welding current patterns pass through the neural network in the direction of feedforward. it is possible to recognize the existence or the size of a welding gap.

  • PDF

Deep learning classifier for the number of layers in the subsurface structure

  • Kim, Ho-Chan;Kang, Min-Jae
    • International journal of advanced smart convergence
    • /
    • v.10 no.3
    • /
    • pp.51-58
    • /
    • 2021
  • In this paper, we propose a deep learning classifier for estimating the number of layers in the Earth's structure. When installing a grounding system, knowledge of the subsurface in the area is absolutely necessary. The subsurface structure can be modeled by the earth parameters. Knowing the exact number of layers can significantly reduce the amount of computation to estimate these parameters. The classifier consists of a feedforward neural network. Apparent resistivity curves were used to train the deep learning classifier. The apparent resistivity at 20 equally spaced log points in each curve are used as the features for the input of the deep learning classifier. Apparent resistivity curve data sets are collected either by theoretical calculations or by Wenner's measurement method. Deep learning classifiers are coded by Keras, an open source neural network library written in Python. This model has been shown to converge with close to 100% accuracy.

An FNN based Adaptive Speed Controller for Servo Motor System

  • Lee, Tae-Gyoo;Lee, Je-Hie;Huh, Uk-Youl
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.82-89
    • /
    • 1997
  • In this paper, an adaptive speed controller with an FNN(Feedforward Neural Network) is proposed for servo motor drives. Generally, the motor system has nonlinearities in friction, load disturbance and magnetic saturation. It is necessary to treat the nonlinearities for improving performance in servo control. The FNN can be applied to control and identify a nonlinear dynamical system by learning capability. In this study, at first, a robust speed controller is developed by Lyapunov stability theory. However, the control input has discontinuity which generates an inherent chattering. To solve the problem and to improve the performances, the FNN is introduced to convert the discontinuous input to continuous one in error boundary. The FNN is applied to identify the inverse dynamics of the motor and to control the motor using coordination of feedforward control combined with inverse motor dynamics identification. The proposed controller is developed for an SR motor which has highly nonlinear characteristics and it is compared with an MRAC(Model Reference Adaptive Controller). Experiments on an SR motor illustrate te validity of the proposed controller.

  • PDF

A Study on the Algorithm Development for Speech Recognition of Korean and Japanese (한국어와 일본어의 음성 인식을 위한 알고리즘 개발에 관한 연구)

  • Lee, Sung-Hwa;Kim, Hyung-Lae
    • Journal of IKEEE
    • /
    • v.2 no.1 s.2
    • /
    • pp.61-67
    • /
    • 1998
  • In this thesis, experiment have performed with the speaker recognition using multilayer feedforward neural network(MFNN) model using Korean and Japanese digits . The 5 adult males and 5 adult females pronounciate form 0 to 9 digits of Korean, Japanese 7 times. And then, they are extracted characteristics coefficient through Pitch deletion algorithm, LPC analysis, and LPC Cepstral analysis to generate input pattern of MFNN. 5 times among them are used to train a neural network, and 2 times is used to measure the performance of neural network. Both Korean and Japanese, Pitch coefficients is about 4%t more enhanced than LPC or LPC Cepstral coefficients.

  • PDF

Efficient Markov Chain Monte Carlo for Bayesian Analysis of Neural Network Models

  • Paul E. Green;Changha Hwang;Lee, Sangbock
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.1
    • /
    • pp.63-75
    • /
    • 2002
  • Most attempts at Bayesian analysis of neural networks involve hierarchical modeling. We believe that similar results can be obtained with simpler models that require less computational effort, as long as appropriate restrictions are placed on parameters in order to ensure propriety of posterior distributions. In particular, we adopt a model first introduced by Lee (1999) that utilizes an improper prior for all parameters. Straightforward Gibbs sampling is possible, with the exception of the bias parameters, which are embedded in nonlinear sigmoidal functions. In addition to the problems posed by nonlinearity, direct sampling from the posterior distributions of the bias parameters is compounded due to the duplication of hidden nodes, which is a source of multimodality. In this regard, we focus on sampling from the marginal posterior distribution of the bias parameters with Markov chain Monte Carlo methods that combine traditional Metropolis sampling with a slice sampler described by Neal (1997, 2001). The methods are illustrated with data examples that are largely confined to the analysis of nonparametric regression models.

Development of Identification Method of Rice Varieties Using Image Processing Technique (화상처리법에 의한 쌀 품종별 판별기술 개발)

  • Kwon, Young-Kil;Cho, Rae-Kwang
    • Applied Biological Chemistry
    • /
    • v.41 no.2
    • /
    • pp.160-165
    • /
    • 1998
  • Current discriminating technique of rice variety is known to be not objective till this time because of depending on naked eye of well trained inspector. DNA finger print method based on genetic character of rice has been indicated inappropriate for on-site application, because the method need much labor and skilled expert. The purpose of this study was to develops the identification technique of polished rice varieties using CCD camera images. To minimize the noise of the captured image, thresholding and median filtering were carried out, and edge was extracted from the image data. Image data after pretreatment of normalize and FFT(fast fourier transform) were used for library model and feedforward backpropagation neural network model. Image processing technique using CCD camera could discriminate the variety of rice with high accuracy in case of quite different rice of shape, but the accuracy was reached at 85% in the similar shape of rice.

  • PDF

Application of Artificial Neural Network to Improve Quantitative Precipitation Forecasts of Meso-scale Numerical Weather Prediction (중규모수치예보자료의 정량적 강수추정량 개선을 위한 인공신경망기법)

  • Kang, Boo-Sik;Lee, Bong-Ki
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.2
    • /
    • pp.97-107
    • /
    • 2011
  • For the purpose of enhancing usability of NWP (Numerical Weather Prediction), the quantitative precipitation prediction scheme was suggested. In this research, precipitation by leading time was predicted using 3-hour rainfall accumulation by meso-scale numerical weather model and AWS (Automatic Weather Station), precipitation water and relative humidity observed by atmospheric sounding station, probability of rainfall occurrence by leading time in June and July, 2001 and August, 2002. Considering the nonlinear process of ranfall producing mechanism, the ANN (Artificial Neural Network) that is useful in nonlinear fitting between rainfall and the other atmospheric variables. The feedforward multi-layer perceptron was used for neural network structure, and the nonlinear bipolaractivation function was used for neural network training for converting negative rainfall into no rain value. The ANN simulated rainfall was validated by leading time using Nash-Sutcliffe Coefficient of Efficiency (COE) and Coefficient of Correlation (CORR). As a result, the 3 hour rainfall accumulation basis shows that the COE of the areal mean of the Korean peninsula was improved from -0.04 to 0.31 for the 12 hr leading time, -0.04 to 0.38 for the 24 hr leading time, -0.03 to 0.33 for the 36 hr leading time, and -0.05 to 0.27 for the 48 hr leading time.

Nonlinear Discrete-Time Reconfigurable Flight Control Systems Using Neural Networks (신경회로망을 이용한 이산 비선형 재형상 비행제어시스템)

  • 신동호;김유단
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.112-124
    • /
    • 2004
  • A neural network based adaptive reconfigurable flight controller is presented for a class of discrete-time nonlinear flight systems in the presence of variations of aerodynamic coefficients and control effectiveness decrease caused by control surface damage. The proposed adaptive nonlinear controller is developed making use of the backstepping technique for the angle of attack, sideslip angle, and bank angle command following without two time separation assumption. Feedforward multilayer neural networks are implemented to guarantee reconfigurability for control surface damage as well as robustness to the aerodynamic uncertainties. The main feature of the proposed controller is that the adaptive controller is developed under the assumption that all of the nonlinear functions of the discrete-time flight system are not known accurately, whereas most previous works on flight system applications even in continuous time assume that only the nonlinear functions of fast dynamics are unknown. Neural networks learn through the recursive weight update rules that are derived from the discrete-time version of Lyapunov control theory. The boundness of the error states and neural networks weight estimation errors is also investigated by the discrete-time Lyapunov derivatives analysis. To show the effectiveness of the proposed control law, the approach is i]lustrated by applying to the nonlinear dynamic model of the high performance aircraft.

A Neural Network Based on Stochastic Computation using the Ratio of the Number of Ones and Zeros in the Pulse Stream (펄스열에서 1인 펄스수와 0인 펄스수의 비를 이용하여 확률연산을 하는 신경회로망)

  • 민승재;채수익
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.7
    • /
    • pp.211-218
    • /
    • 1994
  • Stochastic computation employs random pulse streams to represent numbers. In this paper, we study a new method to implement the number system which uses the ratio of the numbers of ones and zeros in the pulse streams. In this number system. if P is the probability that a pulse is one in a pulse stream then the number X represented by the pulse stream is defined as P/(1-P). We propose circuits to implement the basic operations such as addition multiplication and sigmoid function with this number system and examine the error characteristics of such operations in stochastic computation. We also propose a neuron model and derive a learning algorithm based on backpropagation for the 3-layered feedforward neural networks. We apply this learning algorithm to a digit recognition problem. To analyze the results, we discuss the errors due to the variance of the random pulse streams and the quantization noise of finite length register.

  • PDF

A study on Modified Method of Orthogonal Neural Network for Nonlinear system approximation (비선형 시스템의 근사화를 위한 직교 신경망의 수정 기법에 관한 연구)

  • 김성식;이영석
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.33-40
    • /
    • 1998
  • This paper presents an Modified Orthogonal Neural Network(MONN), new modified model of Orthogonal Neural Network(0NN) based on orthogonal functions, and applies it to nonlinear system approximator. ONN proposed by Yang and Tseng, doesn't have the problems of traditional multilayer feedforward neural networks such as the determination of initial weights and the numbers of layers and processing elements. And tranining of ONN converges rapidly. But ONN cannot adapt its orthogonal functions to a given system. The accuracy of ONN, in terms of the minimal possible deviation between system and approximator, is essentially dependent on the choice of basic orthogonal functions. In order to improve ability and effectiveness of approximate nonlinear systems, MONN has an input transformation layer to adapt its basic orthogonal functions to a given nonlinear system. The results show that MONN has the excellent performance of approximate nonlinear systems and the input transfnrmation makes the ability of MONN better than one of ONN.

  • PDF