• 제목/요약/키워드: Feedback vibration

검색결과 496건 처리시간 0.033초

자기변형재료와 PPF 알고리즘을 이용한 작동기의 진동제어 (Vibration Control of Actuators Using Magnetostrictive Materials and PPF Algorithm)

  • 김민욱;황호연
    • 한국항공운항학회지
    • /
    • 제15권3호
    • /
    • pp.24-32
    • /
    • 2007
  • In this research, using Terfenol-D actuator composed of magnetostrictive material as shaker and controller, active vibration control theory was applied and verified by experiments. PPF(positive Position Feedback) algorithm which is effective for the control of low frequency vibration was used for the control of a structure. Responses of inputs due to various design variable used for the PPF filter were observed. To investigate the characteristics of magnetostrictive materials, actuator responses were measured for known inputs and satisfactory results were obtained to reduce the vibration level after applying the control input for the actuator.

  • PDF

항공기용 하니콤 트림판넬의 능동제어 (Active Control of Honeycomb Trim Panels for Aircrafts)

  • ;정의봉;홍진숙
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.464-473
    • /
    • 2006
  • This paper summarises theoretical and experimental work on the feedback control of sound radiation from honeycomb panels using piezoceramic actuators. It is motivated by the problem of sound transmission in aircraft, specifically the active control of trim panels. Trim panels are generally honeycomb structures designed to meet the design requirement of low weight and high stiffness. They are resiliently-mounted to the fuselage for the passive reduction of noise transmission. Local coupling of the closely-spaced sensor and actuator was observed experimentally and modelled using a single degree of freedom system. The effect of the local coupling was to roll-off the response between the actuator and sensor at high frequencies, so that a feedback control system can have high gain margins. Unfortunately, only relatively poor global performance is then achieved because of localisation of reduction around the actuator. This localisation prompts the investigation of a multichannel active control system. Globalised reduction was predicted using a model of 12 channel direct velocity feedback control. The multichannel system, however, does not appear to yield a significant improvement in the performance because of decreased gain margin.

  • PDF

주파수 영역 모델 방법을 이용한 평판 구조물의 능동 소음전달 제어 (Active Noise Transmission Control Through a Panel Structure Using a Frequency Domain Identification Method)

  • 김영식;김인수;문찬영
    • 한국정밀공학회지
    • /
    • 제18권9호
    • /
    • pp.71-81
    • /
    • 2001
  • This paper analyzes the effectiveness of minimizing vibration and sound transmission on/through a thin rectangular plate by both feedback control and hybrid control which combines adaptive feedforward control with a feedback loop. An experimental system identification technique using the matrix-fractional curve-fitting of the frequency response data is introduced for complex shaped structures. This identification technique reduces the model order o the MIMO(Multi-Input Multi-Output) system which simplifies the practical implementation. The adaptive feedforward control uses a Multiple filtered-x LMS(Least Mean Square) algorithm and the feedback control uses a multivariable digital LQG(Linear Quadratic Gaussian) algorithm. Experimental results show that an effective reduction of sound transmission is achieved by the hybrid control scheme when both vibration and noise measurement signals are incorporated in the controller.

  • PDF

가속도가 포함된 순간최적제어 알고리듬을 이용한 구조물 진동의 능동제어 (Active Control of Structural Vibration Using An Instantaneous Control Algorithm including Acceleration Feedback)

  • 문석준;정태영
    • 소음진동
    • /
    • 제6권2호
    • /
    • pp.215-224
    • /
    • 1996
  • Active vibration control is generally used to reduce vibration level by the actuators based on measured signal. Dynamic properties of a structure can be easily modified by the active vibration control, so that the vibration level may be effectively reduced to the magnitude below the allowable limit over a wide frequency rangs. In this paper, an instantaneous optimal control algorithm including acceleration feedback is presented for the active vibration control of large structures considering facts that the acceleration response can be easily measured, but the displacement and velocity response are obtained by numerically integrating the measured acceleration response with some errors. The adverse effect of the time delay is overcomed by taking into account the dynamic characteristics of an actuator and filters in the design of controller. Performance test is carried out using a hydraulic active mass driver on a test structure$(L{\times}W{\times}H;=;1200mm{\times}800mm{\times}1600mm, about;500kg)$ supported by four columns under base excitations. It is confirmed that the vibration level of the test structure are reduced to about 1/6 near resonance.

  • PDF

틸딩 패드 기체 베어링으로 지지된 로터 계 자려 진동의 능동제어 (Active control of the Self-excited Vibration of a Rotor System Supported by Tilting-Pad Gas Bearing)

  • 권대규
    • 한국정밀공학회지
    • /
    • 제18권2호
    • /
    • pp.119-125
    • /
    • 2001
  • This paper presents an experimental study on active control of self-excited vibration for a high speed turbomachinery. In order to suppress the self-excited vibration, it is necessary to actively control the air film pressure or the air film thickness. In this study, active pads are used to control the air film thickness. Active pads are supported by pivots containing piezoelectric actuators and their radial position can be actively controlled by applying voltage to the actuators. The transfer characteristics from actuator inputs to shaft vibration outputs are experimentally investigated. In a tilting-pad gas bearing (TPGB), a shaft is supported by the pressurized air film. Four gap sensors were used to measure the vibration of the shaft and PID was used in the feedback control of the shaft vibration. The experimental results show that the self-excited vibration of the rotor can be effectively suppressed if the PID controller gains are properly chosen. As a result we find that the feedback control is effective for suppressing the self-excited vibration of a rotor system using stack-type PZT actuators.

  • PDF

압전감지기/작동기를 이용한 복합적층판의 다중모드 진동제어 (Multi-Modal Vibration Control of Laminated Composite Plates Using Piezoceramic Sensors/Actuators)

  • 김문현;강영규;박현철;황운봉;한경섭
    • 대한기계학회논문집A
    • /
    • 제20권10호
    • /
    • pp.3173-3185
    • /
    • 1996
  • Multi-model vibration control of laminated composites plates for various fiver orientations has been carried out by making use of piezolectric materials(PZT) as sensors and actuators. Cantilever plate is used as a specimen to test multi-modal vibration supression under random exitation. Impulse technique is applied to determine the natural frequency, the damping ratio(.zeta.) and the modal damping(2.zeta..omega.) of the first bending and the trosion modes. Two independent controllers are implemented to control the two modes simultaneously and established digitally on the basis of the direct negative velocity feedback control with collocated sensor/actuator. Experimental results for various fiber orientations and feedback gains are compared with finite element analysis considering stiffnesses and dampings of piezoeletiric sensors, actuators and bonding layer.

Active vibration robust control for FGM beams with piezoelectric layers

  • Xu, Yalan;Li, Zhousu;Guo, Kongming
    • Structural Engineering and Mechanics
    • /
    • 제67권1호
    • /
    • pp.33-43
    • /
    • 2018
  • The dynamic output-feedback robust control method based on linear matrix inequality (LMI) method is presented for suppressing vibration response of a functionally graded material (FGM) beam with piezoelectric actuator/sensor layers in this paper. Based on the reduced model obtained by using direct mode truncation, the linear fractional state space representation of a piezoelectric FGM beam with material properties varying through the thickness is developed by considering both the inherent uncertainties in constitution material properties as well as material distribution and the model error due to mode truncation. The dynamic output-feedback robust H-infinity control law is implemented to suppress the vibration response of the piezoelectric FGM beam and the LMI method is utilized to convert control problem into convex optimization problem for efficient computation. In numerical studies, the flexural vibration control of a cantilever piezoelectric FGM beam is considered to investigate the accuracy and efficiency of the proposed control method. Compared with the efficient linear quadratic regulator (LQR) widely employed in literatures, the proposed robust control method requires less control voltage applied to the piezoelectric actuator in the case of same control performance for the controlled closed-loop system.

Quantitative Feedback Theory를 이용한 능동 자기베어링의 적용 연구 (A Study for Application of Active Magnetic Bearing using Quantitative Feedback Theory)

  • 이관열;이형복;김영배
    • 한국정밀공학회지
    • /
    • 제18권11호
    • /
    • pp.107-115
    • /
    • 2001
  • Most of rotating machineries supported by contact bearing accompany lowering efficiency, vibration and wear. Moreover, because of vibration, which is occurred in rotating shaft, they have the limits of driving speed and precision. The rotor system has parametric variations or external disturbances such as mass unbalance variations in long operation. Therefore, it is necessary to research about magnetic bearing, which is able to support the shaft without mechanical contact and to control rotor vibration without being affected by external disturbances or parametric changes. Magnetic bearing system in the paper is composed of position sensor, digital controller, actuating amplifier and electromagnet. This paper applied the robust control method using quantitative feedback theory (QFT) to control the magnetic bearing. It also proposed design skill of optimal controller, in case the system has structured uncertainty, unstructured uncertainty and disturbance. Reduction of vibration is verified at critical rotating speed even external disturbance exists. Unbalance response, a serious problem in rotating machinery, is improved by magnetic bearing using QFT algorithm.

  • PDF

직접속도 피드백을 이용한 지능판의 능동구조음향제어 (Active Structural Acoustical Control of a Smart Panel Using Direct Velocity Feedback)

  • Stephen J, Elliott;Paolo, Gardonio;Young-Sup, Lee
    • 한국소음진동공학회논문집
    • /
    • 제14권10호
    • /
    • pp.1007-1014
    • /
    • 2004
  • This paper presents a study of low frequencies volume velocity vibration control of a smart panel in order to reduce sound transmission. A distributed piezoelectric quadratically shaped polyvinylidene fluoride (PVDF) polymer film is used as a uniform force actuator and an array of $4\;{\times}\;4$ accelerometer is used as a volume velocity sensor for the implementation of a single-input single-output control system. The theoretical and experimental study of sensor-.actuator frequency response function shows that this sensor-actuator arrangement provides a required strictly positive real frequency response function below about 900 Hz. Direct velocity feedback could therefore be implemented with a limited gain which gives reductions of about 15 dB in vibration level and about 8 dB in acoustic power level at the (1,1) mode of the smart panel. It has been also shown that the shaping error of PVDF actuator could limit the stability and performance of the control system.

2관성계의 규범모델에 의한 진동억제제어 (The Vibration Suppression Control of a Two-Mass System using a Reference Model)

  • 김진수;강석진;김현중;김영석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 F
    • /
    • pp.1872-1875
    • /
    • 1998
  • In the industrial motor drive system, a shaft torsional vibration is often generated when a motor and a load are connected with a flexible shaft. This paper treats the vibration suppression control of such a system. Recently, there are new methods which estimate unknown state variables by using a reduced order observer and feedback these state variables by using a pole placement design method. But there is a trade-off between the fast command following property and the attenuation of disturbances and vibrations in these design methods. In this paper, the vibration suppression control of a two-mass system using a reference model is proposed. Because of using a reference model, the proposed control satisfy the fast command following property and the attenuation of disturbances and vibrations. Control parameter can be changed to maintain high system performance in control using a reference model. Experimental results show the validity of the proposed state feedback control using a reference model, and this controller is compared with the state feedback controller.

  • PDF