• Title/Summary/Keyword: Feedback types

Search Result 404, Processing Time 0.021 seconds

Design of a Nonlinear Control System for Continuously Variable Transmission (무단 변속기를 위한 비선형 제어 시스템의 설계)

  • Park, Seong-Wook;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2348-2351
    • /
    • 2000
  • In order to operate SI(Spark Ignition) engine at the optimal fuel efficiency, it is necessary to use continuously variable transmission(CVT) which has more excellent fuel consumption property than transmissions of gear box types commonly used. This study introduces new type of nonlinear control approach to control precisely CVT including nonlinear characteristics. The nonlinear controller is basically composed of input-state feedback linearization, which can cancel the nonlinearities included in CVT on specific controllable area, and sliding-mode control. In this paper, good control performance of contrtol system with the nonlinear controller is confirmed with computer simulations.

  • PDF

ON A CHARACTERIZATION OF T-FUNCTIONS WITH ONE CYCLE PROPERTY

  • Rhee, Min Surp
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.259-268
    • /
    • 2008
  • To the design of secret key, there are two types of basic approaches called the tame approach and the wild approach. In the tame approach we try to use only simple primitives such as linear feedback shift registers and to prove mathematical theorems about their cryptographic properties. In the wild approach we try to use crazy compositions of operations which mix a variety of domains in a nonlinear and nonalgebraic way. There are several papers which try to bridge this gap by considering semi-wild constructions. A T-function on n-bit words plays an important role in semi-wild constructions. In this paper we study the invertibility and the period of some T-functions. Especially we characterize some polynomials which has a single cycle property.

  • PDF

Seismic response control of buildings with force saturation constraints

  • Ubertini, Filippo;Materazzi, A. Luigi
    • Smart Structures and Systems
    • /
    • v.12 no.2
    • /
    • pp.157-179
    • /
    • 2013
  • We present an approach, based on the state dependent Riccati equation, for designing non-collocated seismic response control strategies for buildings accounting for physical constraints, with particular attention to force saturation. We consider both cases of active control using general actuators and semi-active control using magnetorheological dampers. The formulation includes multi control devices, acceleration feedback and time delay compensation. In the active case, the proposed approach is a generalization of the classic linear quadratic regulator, while, in the semi-active case, it represents a novel generalization of the well-established modified clipped optimal approach. As discussed in the paper, the main advantage of the proposed approach with respect to existing strategies is that it allows to naturally handle a broad class of non-linearities as well as different types of control constraints, not limited to force saturation but also including, for instance, displacement limitations. Numerical results on a typical building benchmark problem demonstrate that these additional features are achieved with essentially the same control effectiveness of existing saturation control strategies.

Experimental Considerations in Tracking Control of HDD Dual Stage Actuator (HDD의 2단구동기를 이용한 트랙 추종 제어의 실험적 고찰)

  • Park, Sung-Joon;Park, No-Cheol;Yang, Hyun-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.237-242
    • /
    • 2000
  • The areal recording density of HDD(Hard Disk Drive) has been increasing by about 60% a year. In order to achieve high areal density, less track pitch is expected and more servo bandwidth is required. Dual stage actuator and servo controller for HDD have been suggested for achieving high track density as a possible solution. Dual-loop servo system is generally classified into a two-input-two-output system, but if we use an estimator for a two-input-two-output system, it can be converted into two input one output system. Since we can't control the dual stage servo system by the classical method, it requires a special technique; for example, Parallel Loop System, Master-Slave Loop System, Decoupled Master-Slave Loop System, and Dual Feedback Loop System. In this paper, we performed experimental evaluations of several types of control algorithm. Further experiments will be made in the future.

  • PDF

A Lossless Image Compression using Wavelet Transform with 9/7 Integer Coefficient Filter Bank (9/7텝을 갖는 정수 웨이브릿 변환을 이용한 무손실 정지영상 압축)

  • 추형석;서영천;이태호;전희성;안종구
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.253-256
    • /
    • 2000
  • In this paper, we propose the lossless image compression algorithm using the integer wavelet transform. Recently, the S+P transform is widely used and computed with only integer addition and bit-shift operations, but not proper to remove the correlation of smooth images. then we compare the Harr wavelet of the S+P transform with various integer coefficient filter banks and apply 9/7 ICFB to the wavelet transform. In addition, we propose a entropy-coding method that exploits the multiresolution structure and the feedback of the prediction error, and can efficiently compress the transformed image for progressive transmission. Simulation results are compared to the compression ratio using the S+P transform with different types of images.

  • PDF

Overview of the development of smart base isolation system featuring magnetorheological elastomer

  • Li, Yancheng;Li, Jianchun
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.37-52
    • /
    • 2019
  • Despite its success and wide application, base isolation system has been challenged for its passive nature, i.e., incapable of working with versatile external loadings. This is particularly exaggerated during near-source earthquakes and earthquakes with dominate low-frequency components. To address this issue, many efforts have been explored, including active base isolation system and hybrid base isolation system (with added controllable damping). Active base isolation system requires extra energy input which is not economical and the power supply may not be available during earthquakes. Although with tunable energy dissipation ability, hybrid base isolation systems are not able to alter its fundamental natural frequency to cope with varying external loadings. This paper reports an overview of new adventure with aim to develop adaptive base isolation system with controllable stiffness (thus adaptive natural frequency). With assistance of the feedback control system and the use of smart material technology, the proposed smart base isolation system is able to realize real-time decoupling of external loading and hence provides effective seismic protection against different types of earthquakes.

A Study on Coding Education for Non-Computer Majors Using Programming Error List

  • Jung, Hye-Wuk
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.203-209
    • /
    • 2021
  • When carrying out computer programming, the process of checking and correcting errors in the source code is essential work for the completion of the program. Non-computer majors who are learning programming for the first time receive feedback from instructors to correct errors that occur when writing the source code. However, in a learning environment where the time for the learner to practice alone is long, such as an online learning environment, the learner starts to feel many difficulties in solving program errors by himself/herself. Therefore, training on how to check and correct errors after writing the program source code is necessary. In this paper, various types of errors that can occur in a Python program were described, the errors were classified into simple errors and complex errors according to the characteristics of the errors, and the distributions of errors by Python grammar category were analyzed. In addition, a coding learning process to refer error lists was designed to present a coding learning method that enables learners to solve program errors by themselves.

Analysis of Strategies for Quality Assurance in Online Education: The Implications of the Role of an Instructional Design Team to Support Faculty

  • Jeeyoung CHUN;Sookyung LEE
    • Educational Technology International
    • /
    • v.24 no.1
    • /
    • pp.53-80
    • /
    • 2023
  • This study investigates faculty support for quality assurance in online education, and offers suggestions for its improvement based on feedback from Instructional Design (ID) staff working at a public university in the U.S. Qualitative research using semi-structured interviews was conducted with seven ID staff in order to examine their perceptions regarding faculty support related to quality assurance in online education. The results of the data analysis indicate that four types of faculty support-quality assurance reviews using Quality Matter (QM) standards, templates, individual consultations with ongoing support, and monitoring-were offered for faculty. Faculty support for quality assurance in online education could be improved by developing specific quality assurance standards, recruiting external experts, examining learning effects, developing a quality assurance management system, and sharing documents among ID staff. This study highlights the necessity of quality assurance in online education and provides cases of faculty support in a real higher education setting.

Key Quality of Service Attributes of Digital Platforms

  • Nandakishore K N;V Sridhar;T K Srikanth
    • Asia pacific journal of information systems
    • /
    • v.30 no.1
    • /
    • pp.94-119
    • /
    • 2020
  • Digital platforms characterized by network effects enable provisioning of various types of services and provide a mechanism for linking producers and consumers. Identifying the key Quality of Service attributes of such platforms is vital for their continued success and growth. In this paper, a set of quality attributes for platforms is first extracted from different extant quality models. Then actual user feedback data from three platform providers are analysed and mapped against the set of quality attributes to determine the key attributes that are relevant. These findings are corroborated with qualitative data from interviews of different stakeholders. The results show that service quality characteristics are important to the success of platforms. Functional characteristics of platforms assume importance where the digital contributions of the platform is higher. Apart from these, 'fitness for use' as a major determinant of quality is also important in digital platforms.

Investigating Key User Experience Factors for Virtual Reality Interactions

  • Ahn, Junyoung;Choi, Seungho;Lee, Minjae;Kim, Kyungdoh
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.267-280
    • /
    • 2017
  • Objective: The aim of this study is to investigate key user experience factors of interactions for Head Mounted Display (HMD) devices in the Virtual Reality Environment (VRE). Background: Virtual reality interaction research has been conducted steadily, while interaction methods and virtual reality devices have improved. Recently, all of the virtual reality devices are head mounted display based ones. Also, HMD-based interaction types include Remote Controller, Head Tracking, and Hand Gesture. However, there is few study on usability evaluation of virtual reality. Especially, the usability of HMD-based virtual reality was not investigated. Therefore, it is necessary to study the usability of HMD-based virtual reality. Method: HMD-based VR devices released recently have only three interaction types, 'Remote Controller', 'Head Tracking', and 'Hand Gesture'. We search 113 types of research to check the user experience factors or evaluation scales by interaction type. Finally, the key user experience factors or relevant evaluation scales are summarized considering the frequency used in the studies. Results: There are various key user experience factors by each interaction type. First, Remote controller's key user experience factors are 'Ease of learning', 'Ease of use', 'Satisfaction', 'Effectiveness', and 'Efficiency'. Also, Head tracking's key user experience factors are 'Sickness', 'Immersion', 'Intuitiveness', 'Stress', 'Fatigue', and 'Ease of learning'. Finally, Hand gesture's key user experience factors are 'Ease of learning', 'Ease of use', 'Feedback', 'Consistent', 'Simple', 'Natural', 'Efficiency', 'Responsiveness', 'Usefulness', 'Intuitiveness', and 'Adaptability'. Conclusion: We identified key user experience factors for each interaction type through literature review. However, we did not consider objective measures because each study adopted different performance factors. Application: The results of this study can be used when evaluating HMD-based interactions in virtual reality in terms of usability.