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ON A CHARACTERIZATION OF T-FUNCTIONS WITH
ONE CYCLE PROPERTY

Min Surp Rhee*

Abstract. To the design of secret key, there are two types of basic
approaches called the tame approach and the wild approach. In the
tame approach we try to use only simple primitives such as linear
feedback shift registers and to prove mathematical theorems about
their cryptographic properties. In the wild approach we try to use
crazy compositions of operations which mix a variety of domains in
a nonlinear and nonalgebraic way. There are several papers which
try to bridge this gap by considering semi-wild constructions. A
T-function on n-bit words plays an important role in semi-wild con-
structions. In this paper we study the invertibility and the period
of some T-functions. Especially we characterize some polynomials
which has a single cycle property.

1. Introduction

There are two basic approaches to the design of secret key crypto-
graphic schemes, which are known as the tame approach and the wild
approach. In the tame approach we try to use only simple primitives
such as linear feedback shift registers and to prove mathematical theo-
rems about their cryptographic properties. In the wild approach we try
to use crazy compositions of operations which mix a variety of domains
in a nonlinear and nonalgebraic way. The first approach is typically pre-
ferred in textbooks and toy schemes, but the second approach is often
used in real world designs. There are several papers which try to bridge
this gap by considering semi-wild constructions. This construction looks
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like crazy combinations of boolean and arithmetic operations but analyz-
able mathematical properties. In these constructions we use T-functions
which contain arbitrary compositions of plus, minus, times, or, and, xor
operations on n-bit words. In this paper we study the invertibility and
the period of some T-functions. Especially we will prove some proposi-
tions in an elementary way to characterize some polynomials which has
a single cycle property.

2. Basic definitions and results

Let Bn = {(xn−1, xn−2, · · · , x1, x0)|xi ∈ B} be the set of all n-tuples
of elements in B, where B = {0, 1}. Then an element of B is called
a bit and an element of Bn is called an n-bit word. An element x of
Bn can be represented as ([x]n−1, [x]n−2, · · · , [x]0), where [x]i−1 is the
i-th component from the right end of x. It is often useful to express x
as

∑n−1
i=0 [x]i2i. In this expression every element x of Bn is considered

as an element of Z2n and the set Bn as the set Z2n , where Z2n is the
congruence ring modulo 2n. For example, an element (0, 1, 1, 0, 1, 0, 0, 1)
of B8 is considered as 105 in Z28 = Z256.

Definition 2.1. For any n-bit words x = (xn−1, xn−2, · · · , x1, x0)
and y = (yn−1, yn−2, · · · , y1, y0) of Bn, we define the following:

(1) x± y is defined as x± y mod 2n.
(2) xy is defined as xy mod 2n.
(3) x ⊕ y is defined as z = (zn−1, zn−2, · · · , z1, z0), where zi = 0 if

xi = yi and zi = 1 if xi 6= yi.
(4) x ∨ y is defined as z = (zn−1, zn−2, · · · , z1, z0), where zi = 0 if

xi = yi = 0 and zi = 1 otherwise.
(5) x ∧ y is defined as z = (zn−1, zn−2, · · · , z1, z0), where zi = 1 if

xi = yi = 1 and zi = 0 otherwise.

Let x = (0, 1, 1, 0, 1, 0, 0, 1) and y = (0, 1, 0, 1, 1, 0, 0, 1) in B8. Then

x + y = (1, 1, 0, 0, 0, 0, 1, 0), x− y = (0, 0, 0, 1, 0, 0, 0, 0),

xy = (1, 0, 0, 0, 0, 0, 0, 1), x⊕ y = (0, 0, 1, 1, 0, 0, 0, 0),

x ∨ y = (0, 1, 1, 1, 1, 0, 0, 1), x ∧ y = (0, 1, 0, 0, 1, 0, 0, 1).

A function f : Bn → Bn is said to be a T− function(short for a
triangular function) if the k-th bit of an n-bit word f(x) depends only
on the first k bits of an n-bit word x.
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Example 2.2. Let f(x) = x + (x2 ∨ 1). If x =
∑n−1

i=0 [x]i2i, then
x2 = [x]0 + ([x]21 + [x]0[x]1)22 + · · · and we have

[f(x)]0 = [x]0 + [x]0 ∨ 1

[f(x)]1 = [x]1
[f(x)]2 = [x]2 + [x]1 + [x]0[x]1

...

[f(x)]i = [x]i + αi, αi is a function of [x]0, · · · , [x]i−1

...

Hence f(x) is a T-function. Also, for any given word f(x) we can find
[x]0, [x]1, · · · , [x]n−1 in order. Therefore f(x) is an invertible T-function.

A polynomial f over Z2n may be considered as a T-function. A
polynomial over Z2n is a permutation polynomial if it is invertible on
Z2n . The following result is well known in [2].

Proposition 2.3. Let f(x) = a0 + a1x + · · ·+ adx
d be a polynomial

over Z2n . Then f(x) is a permutation polynomial over Z2n if and only
if a1 is odd, a2 + a4 + · · · is even and a3 + a5 + · · · is even.

Let a0, a1, · · · an, · · · be a sequence of numbers(or words) in Z2n . If
there is the least positive integer r such that ai+r = ai for each non-
negative integer i, then a0, a1, · · · , ar−1 is called a cycle of period r. In
general ai, ai+1, · · · , ai+r−1 is a cycle of period r for each i.

Now, for any function f : Z2n → Z2n , let us define f i : Z2n → Z2n by

f i(x) =

{
x if i = 0

f(f i−1(x)) if i ≥ 1

Note that if f is a bijective T-function then so does f i for each i. A
word α of Z2n has a cycle of period r in f if r is the least positive integer
such that f r(α) = α. If a word α has a cycle of period r in f , then α
generates a cycle α = α0, α1, · · · , αr−1 of period r, where αi = f i(α).
Also, in this case every αi(0 ≤ i ≤ r − 1) has a cycle of period r. In
particular a word which has a cycle of period 1 is called a fixed word.
That is, a word α of Z2n in f is a fixed word if f(α) = α. Also, f is said
to have a single cycle property if there is a word which has a cycle
of period 2n. In this case every word of Z2n has a cycle of period 2n.

Consider a sequence of words

α0 = f0(α) = α, α1 = f(α), · · · , αi = f i(α), · · · , αm = fm(α), · · ·
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where a word α of Z2n has a cycle of length r in f . Then the r words

α0 = f0(α) = α, α1 = f(α), · · · , αi = f i(α), · · · , αr−1 = f r−1(α)

are repeated in the sequence α0, α1, · · · , αm, · · · . Since we may think a
word as n bits, we may consider that a word α of Z2n which has a cycle
of length r in f generates a binary sequence of period n · 2r. Hence a T-
function f that has a single cycle property generates a binary sequence
of period n · 2n, which is the longest period in f .

Example 2.4. Let f(x) = 2x2 + x in Z16. Then f(0) = 0 and
f(8) = 8 imply that 0 and 8 are fixed words in f . Note f(2) = 10
and f(10) = 2. Hence 2 is a word which has a cycle of period 2. Note
f(1) = 3, f2(3) = 5, · · · , f8(15) = 1. Hence 1 is a word which has a
cycle of period 8. Hence a word 1 in Z16 generates a binary sequence
of period 8 · 4 in f . That is, ’1 3 5 7 9 11 13 15’ is a sequence of words,
which may be represented as a binary sequence

0001 0011 0101 0111 1001 1011 1101 1111

By a simple calculation we know that a function f(x) = x + 1 in Z16

has a single cycle property.

The following three propositions can be easily proved, whose proof
may be found in [2].

Proposition 2.5. If a function f : Z2n → Z2n has a single cycle
property, then Z2n = {f i(x)|i ∈ Z2n} for each x ∈ Z2n . In particular,
Z2n = {f i(0)|i ∈ Z2n}. Consequently, f is an invertible function on Z2n .

Proposition 2.6. Let f be an invertible T-function on Z2n . Then
for each cycle in f of period l on Z2k , there are either two cycles of
period l or one cycle of period 2l on Z2k+1 . Consequently, every cycle in
f on Z2n is of period 2i for some i ≤ n.

Proposition 2.7. A function f : Z2n → Z2n has a single cycle prop-

erty if and only if f2n−1
(0) = 2n−1 mod 2n and f2n

(0) = 0 mod 2n.

3. Length of cycles in some functions

In this section we find the period of cycles in some functions, which
generate binary sequences with a cycle of period long enough. Also, we
characterize some polynomials which have a single cycle property in an
elementary way.



On a characterization of T-functions with one cycle property 263

Proposition 3.1. Let f(x) = x(2x + 1) mod 2n. Then :

(1) The number of fixed words in f is 2[n+1
2

], where [x] is the greatest
integer which is not greater than x.

(2) The number of words of period 2 in f is 2
n
2 if n is even and 0 if

n is odd.

Proof. (1) Let α be a fixed word of f(x). Then we get

f(α) = α mod 2n and 2α2 = 0 mod 2n

Hence α = 2
n
2 k if n is even and α = 2

n−1
2 k if n is odd for some nonneg-

ative integer k. Thus the number of fixed words in f is 2
n
2 if n is even

and 2
n+1

2 if n is odd.
Therefore the number of fixed words in f is 2[n+1

2
].

(2) Let α be a word of f(x) of period ≤ 2. Then we get

f2(α) = α mod 2n and 4α2(2α2 + 2α + 1) = 0 mod 2n

Hence 4α2 = 0 mod 2n and so α2 = 0 mod 2n−2. Thus similarly we can
prove that the number of words of f(x) of period ≤ 2 in f is 2

n
2
+1 if n is

even and 2
n+1

2 if n is odd. Therefore it follows from (1) that the number
of words of period 2 in f is 2

n
2 if n is even and 0 if n is odd.

It is well known that the above function is used in RC6, which is
one of 5 candidate algorithms that were chosen in the second test of
AES(advanced encryption standard). But this function is very unsuit-
able for PRNG(pseudo random number generator). In this sense a func-
tion which has a single cycle property is important for PRNG.

Proposition 3.2. Let f(x) = x + (x2 ∨C) mod 2n be a T-function.
Then the following hold:

(1) If f is invertible, then [C]0 = 1.
(2) f has a single cycle property if and only if [C]0 = [C]2 = 1.

Proof. The proof may be found in [2].

Now, we characterize an affine function with a single cycle property.

Proposition 3.3. Suppose that both a and b are odd, and that
n ≥ 2. Then the following hold:

(1) If a = 1 mod 4, then f(x) = ax + b has a single cycle property.
(2) If a = 3 mod 4, then f(x) = ax + b has no single cycle property.

Proof. Note that

f(0) = b, f2(0) = b(a + 1), · · · , f i(0) = (ai−1 + · · ·+ a + 1)b, · · ·
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(1) If a = 1, then {f i(0)|i ∈ Z2n} = {ib|i ∈ Z2n} = Z2n since (b, 2n) = 1.
Hence the word 0 has a cycle of period 2n. If a 6= 1, then {f i(0)|i ∈
Z2n} = { (ai−1)b

a−1 |i ∈ Z2n}. If n = 2 and a = 1 mod 4, then f(x)
has a cycle of period 22. If n = 3 , then f(x) = 5x + b. Note that
f4(0) = (54−1)b

4 = 4b = 4 mod 8. Hence by Proposition 2.7 f(x) =
ax + b has a single cycle of period 8. Suppose that it holds for n = k.
Then f2k−1

(0) = 0 mod 2k−1 and f2k−1
(0) 6= 0 mod 2k. So we have

(a2k−1−1)b
a−1 = 0 mod 2k−1 and (a2k−1−1)b

a−1 6= 0 mod 2k. Note that a = 1
mod 4 implies (a2k−1

+ 1)b = 2 mod 4. Hence we have

(a2k − 1)b
a− 1

=
(a2k−1 − 1)

a− 1
· (a2k−1

+ 1)b 6= 0 mod 2k+1.

Hence it holds for n = k + 1. Thus f(x) = ax + b has a cycle of period
2n. Therefore, f(x) = ax + b has a single cycle property.

(2) If n = 2, then f(x) = 3x + 1 or f(x) = 3x + 3. In both cases we
have f21

(0) = 0 mod 22. Hence f(x) = ax + b has no cycle of period 22.
Now assume that it holds for n = k. Then f(x) = ax + b has no cycle
of period 2k. Hence f(x) has a cycle of period at most 2k−1. That is,
f2k−1

(0) = 0 mod 2k. Hence we have

f2k−1
(0) =

(a2k−1 − 1)b
a− 1

= 0 mod 2k and (a2k−1 − 1)b = 0 mod 2k(a−1).

Note (a2k − 1)b = (a2k−1
+ 1)(a2k−1 − 1)b = 2t(a2k−1 − 1)b = 0 mod

2k+1(a− 1) for some t with a2k−1
+ 1 = 2t. Hence f2k

(0) = (a2k−1)b
a−1 = 0

mod 2k+1 and so f(x) = ax + b has no cycle of period 2n for any odd
numbers a(6= 1) and b in Z2k+1 .

Therefore, f(x) = ax + b has no single cycle property.

Proposition 3.4. f(x) = ax + b has a single cycle property if and
only if a = 1 mod 4 and (b, 2) = 1.

Proof. Suppose that a 6= 1 mod 4 or (b, 2) 6= 1. Then we will show
the following three cases : a = 3 mod 4, a = 0 mod 2 and (b, 2) 6= 1.

If a = 3 mod 4, then by Proposition 3.3 (2) f(x) has no single cycle
property. If a = 0 mod 2, then f(x) is not invertible. So it has no
single cycle property. If (b, 2) 6= 1, then b is even and so f l(0) is even
for l ∈ Z2n . Hence {f i(0)|i ∈ Z2n} = {ib|i ∈ Z2n} 6= Z2n . Thus f(x)
has no single cycle property. The converse of this theorem is shown in
Proposition 3.3.
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Now, we will discuss a quadratic function with a single cycle property.

Proposition 3.5. Let f(x) = ax2+bx+c be a quadratic polynomial
over Z2n , where the coefficients of f(x) are in Z22 . Then f(x) has a single
cycle property if and only if f(x) is either 2x2 + 3x + 1 or 2x2 + 3x + 3.

Proof. Suppose that f(x) has a single cycle property. Then f has no
fixed word. Hence f(0) 6= 0 implies c = 1 or c = 3. Since f is invertible,
for any distinct x and y we get ax2 + bx + c 6= ay2 + by + c. In fact we
have (x− y){a(x+ y)+ b} 6= 0 or a(x+ y)+ b 6= 0 for any distinct x and
y. Hence a is even and b is odd. Thus there are four cases below:

f(x) = 2x2 + x + 1, f(x) = 2x2 + x + 3,

f(x) = 2x2 + 3x + 1, f(x) = 2x2 + 3x + 3.

In the first two cases we get f2(0) = 0 mod 22. Hence by the 2nd proof
of Proposition 3.3 the word 0 has a cycle of period 2 in f(x) = 2x2+x+1
and f(x) = 2x2 +x+3. Hence f(x) has no single cycle property. In the
last two cases f(x) = 2x2 + 3x + 1 and f(x) = 2x2 + 3x + 3 the word 0
has a cycle of period 2k for k ≤ 3. Assume that in f(x) = 2x2 + 3x + 1
the word 0 has a cycle of period 2k for k ≥ 3. Then f2k−1

(0) = 0 mod
2k−1 and f2k−1

(0) 6= 0 mod 2k (ie f2k−1
(0) = 2k−1 mod 2k). Consider

{f i(0)|i ∈ Z2k} = {0 = f0(0), f1(0), f2(0), · · · f2k−1−1(0), f2k−1
(0) = 0

+ 2k−1, · · · , f2k−1(0) = 2k−1 + f2k−1−1(0)}
= Z2k

in Z2k and f2k
(0) = 0 mod 2k. Since f2k−1

(0) = 2k−1 mod 2k we have
f2k−1

(0) = 2k−1 + α2k mod 2k+1 for some α.
Since 3 · 2k−1 = 2k−1 + 2k and 3α · 2k = α · 2k mod 2k+1 we get the

following:

f2k−1+1(0) = f(f2k−1
(0))

= 2(2k−1 + α2k)2 + 3(2k−1 + α2k) + 1 mod 2k+1

= 3 · 2k−1 + 3 · 2kα + 1 mod 2k+1

= f(0) + 2k−1 + (1 + α)2k mod 2k+1
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f2k−1+2(0) = f(f2k−1+1(0))

= {2f(0)2 + 3f(0) + 1}+ 2k−1 + α2k mod 2k+1

= f2(0) + 2k−1 + α2k mod 2k+1

f2k−1+3(0) = f(f2k−1+2(0))

= {2f2(0)2 + 3f2(0) + 1}+ 2k−1 + (1 + α)2k mod 2k+1

= f3(0) + 2k−1 + (1 + α)2k mod 2k+1

...
and we can prove

f2k
(0) = f(f2k−1+2k−1−1(0)) = f2k−1

(0) + 2k−1 + α2k = 2k mod 2k+1

by induction. Hence the word 0 has a cycle of period 2k+1 in f . So
f(x) = 2x2 + 3x + 1 has a single cycle property. Similarly, we can prove
f(x) = 2x2 + 3x + 3 has a single cycle property.

Proposition 3.6. Let f(x) = ax2 + bx + c be a polynomial over
Z2n , where the coefficients of f(x) are in Z22 . Then f(x) has a single
cycle property if and only if f(x) is one of the four polynomials x + 1,
x + 3, 2x2 + 3x + 1 and 2x2 + 3x + 3.

Proof. If a = 0 mod 4, then by Proposition 3.4 f(x) is either x+1 or
x+3. If a 6= 0 mod 4, it follows from Proposition 3.5 that f(x) is either
2x2 + 3x + 1 or 2x2 + 3x + 3. The converse is trivial by Proposition 3.4
and Proposition 3.5.

Finally, we will study a polynomial with a single cycle property. The
following proposition is proved in [3].

Proposition 3.7. A polynomial f(x) has a single cycle modulo 2n

(for any n ≥ 3) if and only if it has a single cycle modulo 8.

Now, we will characterize quadratic functions with a single cycle prop-
erty as shown in the following proposition.

Proposition 3.8. Let f(x) = a2x
2+a1x+a0 be a polynomial. Then

f(x) has a single cycle property if and only if f(x) = g(x)+4h(x), where
h(x) is an arbitrary polynomial of degree 2 and g(x) is one of the four
polynomials 2x2 + 3x + 1 , 2x2 + 3x + 3, 4x2 + x + 1 and 4x2 + x + 3.

Proof. It is easily proved that 2x2 + 3x + 1, 2x2 + 3x + 3, 4x2 +
x + 1 and 4x2 + x + 3 have a single cycle property by Proposition 3.5
and Proposition 3.7. Now let h(x) = b2x

2 + b1x + b0 be an arbitrary
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polynomial of degree 2. Then f(x) = (a2+4b2)x2+(a1+4b1)x+a0+4b0.
In the first case of g(x) = 2x2 +3x+1, we get f(x) = (2+4b2)x2 +(3+
4b1)x + 1 + 4b0 and so we get the following:

f(0) = 1 + 4b0 6= 0 mod 8

f2(0) = (2 + 4b2)(1 + 4b0)
2 + (3 + 4b1)(1 + 4b0) + (1 + 4b0)

= 2 + 4b2 + 3 + 4b1 + 12b0 + 1 + 4b0

= 6 + 4(b1 + b2) mod 8

f3(0) = (2 + 4b2)[6 + 4(b1 + b2)]2 + (3 + 4b1)[6 + 4(b1 + b2)] + (1 + 4b0)

= 2 + 4(b1 + b2) + 1 + 4b0

= 3 + 4(b0 + b1 + b2) mod 8

f4(0) = (2 + 4b2)[3 + 4(b0 + b1 + b2)]2 + (3 + 4b1)[3 + 4(b0 + b1 + b2)]

+ (1 + 4b0)
= 2 + 4b2 + 1 + 4b0 + 4b2 + 1 + 4b0

= 4 mod 8

Hence by Proposition 2.7 f(x) has a single cycle property modulo 8
and so by Proposition 3.7 it has a single cycle property modulo 2n.
Similarly, we can prove that it hold for the remaining 3 cases. Therefore
f(x) = g(x) + 4h(x) has a single cycle property modulo 2n for any g(x)
and h(x).

Conversely, assume f(x) = a2x
2+a1x+a0 has a single cycle property

modulo 2n. Then a1 and a0 are odd, and a2 is even. Let us consider
f(x) on modulo 23. Then a0 = 1, 3, 5, 7 mod 8, a1 = 1, 3, 5, 7 mod 8 and
a2 = 0, 2, 4, 6 mod 8. From these cases we have

(1) a2 = 0 mod 4 : a1 = 1 mod 4 and a0 = 1 mod 2

(2) a2 = 2 mod 4 : a1 = 3 mod 4 and a0 = 1 mod 2
Therefore we have completely proved it.

Proposition 3.9. Let h(x) be an arbitrary polynomial and g(x) be
one of the four polynomials 2x2 + 3x + 1, 2x2 + 3x + 3, x + 1 and x + 3.
Then f(x) = g(x) + 4h(x) has a single cycle property.

Proof. Note that all terms of 4h(x) affect 4 or 8 in f i(0). Hence, by a
similar process shown in the proof of Proposition 3.7, f(x) has a single
cycle property.

By taking an appropriate polynomial instead of h(x) the results of
Proposition 3.9 includes Proposition 3.3(1) and Proposition 3.8.
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