• 제목/요약/키워드: Feedback linearization control

검색결과 302건 처리시간 0.029초

최소위상 확률 비선형 시스템을 위한 필터링 조건과 신경회로망을 사용한 적응제어 (A FILTERING CONDITION AND STOCHASTIC ADAPTIVE CONTROL USING NEURAL NETWORK FOR MINIMUM-PHASE STOCHASTIC NONLINEAR SYSTEM)

  • 석진욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.18-21
    • /
    • 2001
  • In this paper, some geometric condition for a stochastic nonlinear system and an adaptive control method for minimum-phase stochastic nonlinear system using neural network me provided. The state feedback linearization is widely used technique for excluding nonlinear terms in nonlinear system. However, in the stochastic environment, even if the minimum phase linear system derived by the feedback linearization is not sufficient to be controlled robustly. In the viewpoint of that, it is necessary to make an additional condition for observation of nonlinear stochastic system, called perfect filtering condition. In addition, on the above stochastic nonlinear observation condition, I propose an adaptive control law using neural network. Computer simulation shoo's that the stochastic nonlinear system satisfying perfect filtering condition is controllable and the proposed neural adaptive controller is more efficient than the conventional adaptive controller.

  • PDF

비선형 계통에 대한 새로운 이산치 슬라이딩 모드제어 (Noble Discrete Sliding Mode Control for Discrete Nonlinear System)

  • 박승규;이재동;곽군평
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.912-914
    • /
    • 1999
  • In this paper, the feedback linearization technique is used with the sliding mode control for discrete nonlinear systems. This combination of the two control techniques is achieved by Proposing a novel sliding surface which has the nominal dynamics of the original system controlled by feedback linearization technique. Its design is based on the augmented system whose dynamics have a higher order than that of the original system. The reaching Phase is removed by using an initial virtual state which makes the initial sliding function equal to zero.

  • PDF

비대칭형 유압 실린더를 사용한 능동 현가 시스템의 RBF 신경회로망을 이용한 제어기 설계 (Nonlinear Control of Active Suspensions using RBF Network with Asymmetric Hydraulic Cylinder)

  • 장유진;김상우
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권5호
    • /
    • pp.593-600
    • /
    • 1999
  • This paper suggests a suboptimal control scheme of an active suspension system with an asymmetric hydraulic cylinder. In this paper a quarter car model including a nonlinear actuator dynamics is used. A feedback linearization technique is applied to obtain a linear model. An LQ regulator is designed with the linear model to keep robustness against sprung mass variation. The gain of the LQ regulator which depends on the damping coefficient of the damper is calculated by using an RBF neural network for real time application. The improvement achieved with our design is illustrated through comparative simulations.

  • PDF

피에조일렉트릭 액츄에이터의 히스테리시스 보상 제어 (Hysteresis Compensation Control of Piezoelectric Actuators)

  • 임요안;최기흥;최기상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.219-224
    • /
    • 1996
  • Piezoelectric actuators exhibit limited accuracy in tracking control due to their hysteresis nonlinearity. In this study a digital tracking control approach for a piezoelectric actuator based on incorporating a feedback linearization loop with a PID feedback controller is presented. The hysteresis nonlinearity of the piezoelectric actuator is modeled in the feedback compensation loop using the Maxwell slip model. Experiments were performed on a piezoelectric 2-axis linear positioner for tracking linearly decaying sinusoidal waveforms and circles. The experimental results show that the tracking control performance is noticeably improved by augmenting the feedback loop with a model of hysteresis in the feedback compensation loop.

  • PDF

Output Feedback Stabilization of Non-Minimum Phase Nonlinear Systems

  • Jo, Nam-H.;Son, Young-I.;Shim, Hyung-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.60.1-60
    • /
    • 2002
  • . an output feedback stabilizing controller for non-minimum phase nonlinear systems . Assumption 1 : the Jacobi linearization of the given nonlinear linear system is controllable . Assumption 2: an appropriate transformation which transforms the zero dynamics into a special form . Assumption 3: the system satisfies the observability rank condition . Augmentation of systems by augmented by a chain of integrators

  • PDF

조미동 구동기의 반복추종제어에 관한 연구 (A Study on Repetitive Tracking Control of a Coarse-Fine Actuator)

  • 최기상;오종현;최기흥
    • 전자공학회논문지T
    • /
    • 제36T권4호
    • /
    • pp.38-46
    • /
    • 1999
  • 본 논문에서는 조미동 구동기의 반복추종제어에 관하여 논의한다. 제안되는 시스템은 조동구동기로 선형 자기드라이브를, 미동구동기로 선형 압전구동기를 사용하여 구성된다. 특히, 선형 자기드라이브에 내재된 비선형 마찰과 선형 압전구동기의 이력현상이 먼저 모델링되고 되먹임선형화 루프가 이들을 추종제어에 사용한다. 주기적인 입력신호를 추종하는 경우 이를 더욱 확장하려 반복제어 알고리즘을 포함하도록 제어기를 설계한다. 즉, 반복제어기는 되먹임선형화가 적용된 PID 제어기에 설치된다. 실험결과에 의하면 정현파 입력을 추종하는 경우 PID 제어기에 되먹임선형화와 반복제어기를 함께 적용함으로써 추종성능을 크게 향상시킬 수 있는 것으로 나타났다.

  • PDF

미분기하학 방법을 이용한 비선형 가변구조 제어기 설계 (Design of nonlinear variable structure controller using differential geometric methods)

  • 함철주;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.1227-1233
    • /
    • 1993
  • In this paper we present the differential geometric approach for the analysis and design of sliding modes in nonlinear variable structure feedback systems. We also design the robust controller for the nonlinear system using variable structure control theory on the basis of differential geometric methods and feedback linearization applying Min-Max control based on the Lyapunov second method. The robustness against parameter uncertainties for robot manipulators with flexible joint is considered. Simulation results are presented and show the advantage of the proposed nonlinear control method.

  • PDF

수중 운동체의 운동 특성을 고려한 입/출력 제어기 구성에 관한 고찰 (A Study on an Input-Output Controller Based on the Time-Scale Properties of an Underwater Vehicle Dynamics)

  • 조경남;서동철;최항순
    • 대한조선학회논문집
    • /
    • 제45권5호
    • /
    • pp.469-476
    • /
    • 2008
  • In this paper, it is shown that an input-output (I/O) feedback linearized controller can be designed rationally by utilizing the time-scale properties of heave and pitch for an underwater vehicle. It is assumed that the dynamics of the vehicle is restricted to the vertical plane. An output-feedback control is designed, which stabilizes steady cruising paths. It is shown that the vehicle dynamics with acceleration as output becomes minimum phase. The dynamics can be transformed into a reduced system through a kind of partial linearization and singular perturbation technique. The reduced system is not only minimum phase but also exactly I/O linearizable via feedback. The I/O dynamic characteristics of the heave and pitch modes can be made linear and decoupled. Furthermore it becomes independent of cruising condition such as vehicle velocity. This study may help for designing autopilot systems for underwater vehicles.

비선형 PSS을 위한 NFL-$H_{\infty}$/SMC 의 설계 : Part B (NFL-$H_{\infty}$/SMC Design for Nonlinear PSS : Part B)

  • 이상성;박종근;이주장
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.970-972
    • /
    • 1998
  • In this paper, the standard Dole, Glover, Khargoneker, and Francis (abbr. : DGKF 1989) $H_{\infty}$ controller $(H_{\infty}C)$ is extended to the nonlinear feedback linearization-$H_{\infty}$ /sliding mode controller (NFL-$H_{\infty}$/SMC) to solve the problem associated with the full state feedback for the unmeasurable state variables in the conventional SMC, to obtain the smooth control as the linearized controller for a linear system (or to cancel the nonlinearity for the nonlinear system), and to improve the time-domain performance under worst case.

  • PDF

궤환선형화 가능한 비선형 시스템의 입력제한을 고려한 동적 와인드엎 방지 (A Dynamic Anti-windup Scheme for Input-constrained Feedback Linearizable Nonlinear Systems)

  • 윤성식;박종구;윤태웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.534-534
    • /
    • 2000
  • This paper proposes a dynamic compensation scheme for input-constrained feedback linearizable nonlinear systems to cope with the windup phenomenon. Given a feedback linearizing controller for such a nonlinear system designed without considering its input constraint, an additional dynamic compensator is proposed to account for the constraint. This dynamic anti-windup is based on the minimization of a reasonable performance index, and some stability properties of the resulting closed-loop are presented.

  • PDF