• Title/Summary/Keyword: Feedback Compensation

Search Result 312, Processing Time 0.025 seconds

SSCI Mitigation of Series-compensated DFIG Wind Power Plants with Robust Sliding Mode Controller using Feedback Linearization

  • Li, Penghan;Xiong, Linyun;Wang, Jie;Ma, Meiling;Khan, Muhammad Waseem
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.569-579
    • /
    • 2019
  • A robust controller is designed based on feedback linearization and sliding mode control to damp sub-synchronous control interaction (SSCI) in doubly fed induction generator (DFIG) wind power plants (WPPs) interfaced with the grid. A feedback-linearized sliding mode controller (FLSMC) is developed for the rotor-side converter (RSC) through feedback linearization, design of the sliding mode controller, and parameter tuning with the use of particle swarm optimization. A series-compensated 100-MW DFIG WPP is adopted in simulation to evaluate the effectiveness of the designed FLSMC at different compensation degrees and wind speeds. The performance of the designed controller in damping SSCI is compared with proportional-integral controller and conventional sub-synchronous resonance damping controller. Besides the better damping capability, the proposed FLSMC enhances robustness of the system under parameter variations.

A Study on 800 MHz 1W Cartesian Feedback Linearized Power Amplifier for TETRA Signals (TETRA 신호를 위한 800 MHz 대역 1W 급 Cartesian feedback 선형 전력 증폭기에 관한 연구)

  • Oh, Duk-Soo;Kim, Ji-Yeon;Chun, Sang-Hyun;Kim, Jong-Heon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.4
    • /
    • pp.76-85
    • /
    • 2008
  • In this paper, a 800 MHz 1 W cartesian feedback linearized power amplifier is designed and fabricated for TETRA handset application. For amplification of TETRA signal with 200 kHz narrow bandwidth, amplifier linearization performance of more than 30 dBc is improved through the cartesian feedback linearizer at the offset Sequency of ${\pm}25$ kHz. It is clear that the linearization performance is affected by imbalance of gain and phase between I/Q signals and also DC offset. The linearization performance can be maximized by the compensation of those influences. Cartesian feedback is suitable for a liearization technique of narrow band signal with QAM and another modulation signals, as well.

  • PDF

Electrohydraulic Pump-Driven Closed-Loop Blood Pressure Regulatory System

  • Ahn, Jae-Mok
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.449-454
    • /
    • 2007
  • An electrohydraulic (EH) pump-driven closed-loop blood pressure regulatory system was developed based on flow-mediated vascular occlusion using the vascular occlusive cuff technique. It is very useful for investigating blood pressure-dependant physiological variability, in particular, that could identify the principal mediators of renal autoregulation, such as tubuloglomerular feedback (TGF) and myogenic (MYO), during blood pressure regulation. To address this issue, renal perfusion pressure (RPP) should be well regulated under various experimental conditions. In this paper, we designed a new EH pump-driven RPP regulatory system capable of implementing precise and rapid RPP regulation. A closed-loop servo-controlwas developed with an optimal proportional plus integral (PI) compensation using the dynamic feedback RPP signal from animals. An in vivo performance was evaluated in terms of flow-mediated RPP occlusion, maintenance, and release responses. Step change to 80 mmHg reference from normal RPP revealed steady state error of ${\pm}3%$ during the RPP regulatory period after PI action. We obtained rapid RPP release time of approximately 300 ms. It is concluded that the proposed EH RPP regulatory system could be utilized in in vivo performance to study various pressure-flow relationships in diverse fields of physiology, and in particular, in renal autoregulation mechanisms.

Development of Adaptive Feedback Cancellation Algorithm for Multi-channel Digital Hearing Aids (다채널 디지털 보청기를 위한 적응 궤환 제거 알고리즘 개발)

  • 이상민;김상완;권세윤;박영철;김인영;김선일
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.315-321
    • /
    • 2004
  • In this study, we proposed an adaptive feedback cancellation algorithm for multi-band digital healing aids. The adaptive feedback canceller (AFC) is composed of an adaptive notch filter (ANF) for feedback detection and an NLMS (normalized least mean square) adaptive filter for feedback cancellation. The proposed feedback cancellation algorithm is combined with a multi-band hearing aid algorithm which employs the MDCT (modified discrete cosine transform) filter bank for the frequency-dependent compensation of hearing losses. The proposed algorithm together with the MDCT-based multi-channel hearing aid algorithm has been evaluated via computer simulations and it has also been implemented on a commercialized DSP board for real-time verifications.

A Study on the Active Compensation of Operational Amplifier (연산 증폭기의 능동보상에 관한 연구)

  • 김익수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.9 no.1
    • /
    • pp.25-29
    • /
    • 1984
  • The active compensation of operational amplifeir is that it compensates the phase shift and the attennation of gain of OP Amp, according as the frequency increases. The compensation circuit is applied to VCVS and interting integrator. For VCVS, the phase shift of proposed compensated circuit is not concern with the frequency and the gain chracteristic is better than the proposde circuit by Soliman, according as the rate of feedback resistors of compensated circuit changes. Voltage follower accomplishies compgnsation using the same circuit. Also, the compensation circuit to increase O-ffactor in inverting integrator is proposed.

  • PDF

Multi-Stage CMOS OTA Frequency Compensation: Genetic algorithm approach

  • Mohammad Ali Bandari;Mohammad Bagher Tavakoli;Farbod Setoudeh;Massoud Dousti
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.690-703
    • /
    • 2023
  • Multistage amplifiers have become appropriate choices for high-speed electronics and data conversion. Because of the large number of high-impedance nodes, frequency compensation has become the biggest challenge in the design of multistage amplifiers. The new compensation technique in this study uses two differential stages to organize feedforward and feedback paths. Five Miller loops and a 500-pF load capacitor are driven by just two tiny compensating capacitors, each with a capacitance of less than 10 pF. The symbolic transfer function is calculated to estimate the circuit dynamics and HSPICE and TSMC 0.18 ㎛. CMOS technology is used to simulate the proposed five-stage amplifier. A straightforward iterative approach is also used to optimize the circuit parameters given a known cost function. According to simulation and mathematical results, the proposed structure has a DC gain of 190 dB, a gain bandwidth product of 15 MHz, a phase margin of 89°, and a power dissipation of 590 ㎼.

COMMOM MODE COMPENSATION IN FIBER OPTIC INTERFEROMETRIC SENSOR WITH LESS COHERENT LIGHT

  • Park, Kyung-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1108-1111
    • /
    • 1990
  • Sorce noise effect in 1.5 Mach-Zehnder (MZ) interferometer is analyzed. It is shown numerically that with fine adjustments to the feedback gain and initial phase biases, the operating point of the interferometer to achives common mode compensation can be made to lie in a region where the measurand sensitivity is greater than it would be in a conventional Mach-Zehnder interferometer even if the source is less coherent.

  • PDF

Inverter Output Voltage Synthesis Using Novel Dead Time Compensation (새로운 데드타임보상법을 이용한 인버터 출력전압의 합성)

  • Choi, Jong-Woo;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.262-264
    • /
    • 1994
  • In is paper, a novel dead time compensation method is presented which produces inverter output voltages equal to reference voltages. An experimental result is also presented to demonstrate the validity of the proposed method. The reference voltage can be used as a feedback value, which is essential for sensorless vector control and flux estimation. The method can be carried out automatically by an inverter controller for initial set-up without any extra hardware.

  • PDF

Control of Discrete-time Saturating Systems by using Feedback Compensation Matrix (되먹임 보상 행렬을 이용한 이산 포화 시스템의 제어)

  • 박종구;최종호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.447-457
    • /
    • 1994
  • This paper presents a compensation method for discrete-time control systems with saturation nonlinearities to cope with the reset windup phenomena. The proposed ARW (Anti-Reset Windup) method is motivated by the concept of the equilibrium point. The design parameter of the ARW scheme is explicitly derived by minimizing a reasonable performance index. The resulting dynamics of the compensated controller exhibits the reduced model form of the unsaturated system which can be obtained by the singular perturbational model reduction method. An example is given to illustrate the effectiveness of the proposed method.

Modeling and Analysis of Buck LED Driver with Slope Compensation (Slope 보상을 가진 벅 LED 구동기의 모델링 및 해석)

  • Kim, Marn-Go;Jung, Young-Seok;Kim, Nam-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.98-99
    • /
    • 2017
  • A discrete time domain modeling for the current-mode-controlled buck LED driver is presented in this paper. Based on the modeling result, a root locus analysis for the buck LED driver with slope compensation is done to derive the stability boundaries of feedback gains.

  • PDF