• Title/Summary/Keyword: Feed speed

Search Result 911, Processing Time 0.03 seconds

Friction Behavior of High Velocity Oxygen Fuel (HVOF) Thermal Spray Coating Layer of Nano WC-Co Powder

  • Cho, T.Y.;Yoon, J.H.;Kim, K.S.;Fang, W.;Joo, Y.K.;Song, K.O.;Youn, S.J.;Hwang, S.Y.;Chun, H.G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.4
    • /
    • pp.170-174
    • /
    • 2007
  • High Velocity Oxygen Fuel (HVOF) thermal spray coating of nano size WC-Co powder (nWC-Co) has been studied as one of the most promising candidate for the possible replacement of the traditional hard plating in some area which causes environmental and health problems. nWC-Co powder was coated on Inconel 718 substrates by HVOF technique. The optimal coating process obtained from the best surface properties such as hardness and porosity is the process of oxygen flow rate (FR) 38 FMR, hydrogen FR 57 FMR and feed rate 35 g/min at spray distance 6 inch for both surface temperature $25^{\circ}C\;and\;500^{\circ}C$. In coating process a small portion of hard WC decomposes to less hard $W_2C$, W and C at the temperature higher than its decomposition temperature $1,250^{\circ}C$ resulting in hardness decrease and porosity increase. Friction coefficient increases with increasing coating surface temperature from 0.55-0.64 at $25^{\circ}C$ to 0.65-0.76 at $500^{\circ}C$ due to the increase of adhesion between coating and counter sliding surface. Hardness of nWC-Co is higher or comparable to those of other hard coatings, such as $Al_2O_3,\;Cr,\;Cr_2O_3$ and HVOF Tribaloy 400 (T400). This shows that nWC-Co is recommendable for durability improvement coating on machine components such as high speed spindle.

A Study on Effect of Flex Additions for Selecting the Process Parameters in GMA Welding processes (GMA 용접공정에서 공정변수 선정을 위한 플럭스 첨가에 관한 연구)

  • Kim, In-Ju;Kim, Jun-Ki
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • As the quality of a weld joint is strongly influenced by process parameters the welding process, an intelligent algorithms that can predict the bead geometry and shape to accomplish the desired mechanical properties of the weldment should be developed. In this study, prepared by ${\Phi}1.6mm$ GMA welding of metal wire nose Advice jowelui 350A 600A grade level inverter welder and DAIHEN SCR's were carried out using welding. Welding conditions were 5.5m/min wire feed rate the welding current is rapidly transmit approximately 260A, welding voltage was about 30V. CTWD a 22mm, shielding gas was Ar 20L/min and the welding speed was a 240mm/min. Using data collected during welding equipment welding current and welding voltage waveform was analyzed by measuring the volume of the transition mode. Addition of $CaCO_3$ as a loss of the spread of the weld bead dilution rate decreased, suggesting that, GMA in the overlay welding bead shape control, dilution control and may be used as a welding flux is considered. Stabilizing effect of the arc by the Ca-containing $CaF_2$, $CaCO_3$, $CaMg(CO_3)_2$, respectively, welding flux 0.1wt.% added GMA welding and weld overlay were evaluated with dilution, $CaF_2$, and $CaMg(CO_3)_2$ added to the dilution of Seemed to increase.

The Possibility of Neural Network Approach to Solve Singular Perturbed Problems

  • Kim, Jee-Hyun;Cho, Young-Im
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.69-76
    • /
    • 2021
  • Recentlly neural network approach for solving a singular perturbed integro-differential boundary value problem have been researched. Especially the model of the feed-forward neural network to be trained by the back propagation algorithm with various learning algorithms were theoretically substantiated, and neural network models such as deep learning, transfer learning, federated learning are very rapidly evolving. The purpose of this paper is to study the approaching method for developing a neural network model with high accuracy and speed for solving singular perturbed problem along with asymptotic methods. In this paper, we propose a method that the simulation for the difference between result value of singular perturbed problem and unperturbed problem by using neural network approach equation. Also, we showed the efficiency of the neural network approach. As a result, the contribution of this paper is to show the possibility of simple neural network approach for singular perturbed problem solution efficiently.

Experimental and numerical FEM of woven GFRP composites during drilling

  • Abd-Elwahed, Mohamed S.;Khashaba, Usama A.;Ahmed, Khaled I.;Eltaher, Mohamed A.;Najjar, Ismael;Melaibari, Ammar;Abdraboh, Azza M.
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.503-522
    • /
    • 2021
  • This paper investigates experimentally and numerically the influence of drilling process on the mechanical and thermomechanical behaviors of woven glass fiber reinforced polymer (GFRP) composite plate. Through the experimental analysis, a CNC machine with cemented carbide drill (point angles 𝜙=118° and 6 mm diameter) was used to drill a woven GFRP laminated squared plate with a length of 36.6 mm and different thicknesses. A produced temperature during drilling "heat affected zone (HAZ)" was measured by two different procedures using thermal IR camera and thermocouples. A thrust force and cutting torque were measured by a Kistler 9272 dynamometer. The delamination factors were evaluated by the image processing technique. Finite element model (FEM) has been developed by using LS-Dyna to simulate the drilling processing and validate the thrust force and torque with those obtained by experimental technique. It is found that, the present finite element model has the capability to predict the force and torque efficiently at various drilling conditions. Numerical parametric analysis is presented to illustrate the influences of the speeding up, coefficient of friction, element type, and mass scaling effects on the calculated thrust force, torque and calculation's cost. It is found that, the cutting time can be adjusted by drilling parameters (feed, speed, and specimen thickness) to control the induced temperature and thus, the force, torque and delamination factor in drilling GFRP composites. The delamination of woven GFRP is accompanied with edge chipping, spalling, and uncut fibers.

RSM-based MOALO optimization and cutting inserts evaluation in dry turning of AISI 4140 steel

  • Hamadi, Billel;Yallese, Mohamed Athmane;Boulanouar, Lakhdar;Nouioua, Mourad;Hammoudi, Abderazek
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.17-33
    • /
    • 2022
  • An experimental study is carried out to investigate the performance of the cutting tool regarding the insert wear, surface roughness, cutting forces, cutting power and material removal rate of three coated carbides GC2015 (TiCN-Al2O3-TiN), GC4215 (Al2O3-Ti(C,N)) and GC1015 (TiN) during the dry turning of AISI4140 steel. For this purpose, a Taguchi design (L9) was adopted for the planning of the experiments, the effects of cutting parameters on the surface roughness (Ra), tangential cutting force (Fz), the cutting power (Pc) and the material removal rate (MRR) were studied using analysis of variance (ANOVA), the response surface methodology (RSM) was used for mathematical modeling, with which linear mathematical models were developed for forecasting of Ra, Fz, Pc and MRR as a function of cutting parameters (Vc, f, and ap). Then, Multi-Objective Ant Lion Optimizer (MOALO) has been implemented for multi-objective optimization which allows manufacturers to enhance the production performances of the machined parts. Furthermore, in order to characterize and quantify the flank wear of the tested tools, some machining experiments were performed for 5 minutes of turning under a depth of 0.5 mm, a feed rate of 0.08 mm/rev, and a cutting speed of 350 m/min. The wear results led to a ratio (VB-GC4215/VB-GC2015) of 2.03 and (VB-GC1015/VB-GC2015) of 4.43, thus demonstrating the efficiency of the cutting insert GC2015. Moreover, SEM analysis shows the main wear mechanisms represented by abrasion, adhesion and chipping.

Machinability investigation of gray cast iron in turning with ceramics and CBN tools: Modeling and optimization using desirability function approach

  • Boutheyna Gasmi;Boutheyna Gasmi;Septi Boucherit;Salim Chihaoui;Tarek Mabrouki
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.119-137
    • /
    • 2023
  • The purpose of this research is to assess the performance of CBN and ceramic tools during the dry turning of gray cast iron EN GJL-350. During the turning operation, the variable machining parameters are cutting speed, feed rate, depth of cut and type of the cutting material. This contribution consists of two sections, the first one deals with the performance evaluation of four materials in terms of evolution of flank wear, surface roughness (2D and 3D) and cutting forces. The focus of the second section is on statistical analysis, followed by modeling and optimization. The experiments are conducted according to the Taguchi design L32 and based on ANOVA approach to quantify the impact of input factors on the output parameters, namely, the surface roughness (Ra), the cutting force (Fz), the cutting power (Pc), specific cutting energy (Ecs). The RSM method was used to create prediction models of several technical factors (Ra, Fz, Pc, Ecs and MRR). Subsequently, the desirability function approach was used to achieve a multi-objective optimization that encompasses the output parameters simultaneously. The aim is to obtain optimal cutting regimes, following several cases of optimization often encountered in industry. The results found show that the CBN tool is the most efficient cutting material compared to the three ceramics. The optimal combination for the first case where the importance is the same for the different outputs is Vc=660 m/min, f=0.116 mm/rev, ap=0.232 mm and the material CBN. The optimization results have been verified by carrying out confirmation tests.

Usefulness in Evaluation of NM Image which It Follows in Onco. Flash Processing Application (Onco. Flash Processing 적용에 따른 핵의학 영상의 유용성 평가)

  • Kim, Jung-Soo;Kim, Byung-Jin;Kim, Jin-Eui;Woo, Jae-Ryong;Kim, Hyun-Joo;Shin, Heui-Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.1
    • /
    • pp.13-18
    • /
    • 2008
  • Purpose: The image processing method due to the algorism which is various portion nuclear medical image decision is important it makes holds. The purpose of this study is it applies hereupon new image processing method SIEMENS (made by Pixon co.) Onco. flash processing reconstruction and the comparison which use the image control technique of existing the clinical usefulness it analyzes with it evaluates. Materials & Methods: 1. Whole body bone scan-scan speed 20 cm/min, 30 cm/min & 40 cm/min blinding test 2. Bone static spot scan-regional view 200 kcts, 400 kcts for chest, pelvis, foot blinding test 3. 4 quadrant-bar phantom-20000 kcts visual evaluation 4. LSF-FWHM resolution comparison ananysis. Results: 1. Raw data (20 cm/min) & processing data (30 cm/min)-similar level image quality 2. Low count static image-image quality clearly improved at visual evaluation result. 3. Visual evaluation by quadrant bar phantom-rising image quality level 4. Resolution comparison evaluation (FWHM)-same difference from resolution comparison evaluation Conclusion: The study which applies a new method Onco. flash processing reconstruction, it will be able to confirm the image quality improvement which until high level is clearer the case which applies the method of existing better than. The new reconstruction improves the resolution & reduces the noise. This enhances the diagnostic capabilities of such imagery for radiologists and physicians and allows a reduction in radiation dosage for the same image quality. Like this fact, rising of equipment availability & shortening the patient waiting move & from viewpoint of the active defense against radiation currently becomes feed with the fact that it will be the useful result propriety which is sufficient in clinical NM.

  • PDF

Effect of Seeding Dates on Yield and Quality of Various Oat Cultivars for Year-Around Forage Production (생태형이 다른 귀리품종의 파종기별 조사료 생산성 및 사료가치)

  • Han, Ouk-Kyu;Park, Tae-Il;Park, Hyung-Ho;Song, Tae-Hwa;Hwang, Jong-Jin;Baek, Seong-Beum;Kim, Dea-Wook;Kwon, Young-Up
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.3
    • /
    • pp.209-220
    • /
    • 2012
  • Most oats are used for livestock feed in the world. This experiment was conducted at Iksan city of Korea from 2007 to 2008. The objective of this study was to select eminent oat (Avena sativa L.) cultivars with high-yielding and a quality for forage adaptable in each planting seasons. Experimental design was split-plot design with three replications. A split plot design was used with seeding date on the main plots and other treatments fully randomized in sub-plots. A factorial arrangement of treatments included three different ecotypes cultivars, winter type (Sanmhan, Donghan and Chohan), summer type (High-speed, Darkhorse, and Swan), and naked oats near to spring type (Daeyang, Choyang, and Sunyang) and twelve seeding dates (twice a month from March to November). Plant height, dry matter yield, and percent TDN was significantly affected by seeding dates, cultivars, and the interaction of cultivars ${\times}$ seeding dates. There was a decrease in plant height, dry matter yield, and percent total digestible nutrients (TDN) as seeding was delayed from early March to late June and it also from early September to early November. The winter type oat cultivars such as Samhan, Donghan, and Chohan adapted to fall seeding and early summer harvest, while summer type cultivars such as High-speed, Darkhorse, and Swan showed high productivity either to summer seeding and mid-fall harvest or to spring seeding and early summer harvest. Naked type cultivars, Choyang and Daeyang, showed high forage yield by spring and summer seeding except for fall seeding because of cold damage. Summer type oat cultivars such as High-speed, Darkhorse, and Swan can supplement high forage production in spring. TDN yield showd the most at seeding in October 10 (780 kg $10a^{-1}$), followed at seeding in March 23 (627 kg $10a^{-1}$).

Hay Preparation Technology for Sorghum×Sudangrass Hybrid Using a Stationary Far-Infrared Dryer (정치식 원적외선 건조기를 이용한 수수×수단그라스 교잡종의 건초 조제 기술 연구)

  • Jong Geun Kim;Hyun Rae Kim;Won Jin Lee;Young Sang Yu;Yan Fen Li;Li Li Wang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.1
    • /
    • pp.22-27
    • /
    • 2023
  • This experiment was conducted to confirm the possibility of preparing Sorghum×sudangrass hybrid artificial hay using far-infrared rays in Korea. The machine used in this experiment is a drying device based on far-infrared rays, and is designed to control temperature, air flow rate, far-infrared radiation amount, and air flow speed. The Sorghum×sudangrass hybrids harvested in late September were wilted in the field for one day, and a drying test was performed on them. Conditions for drying were performed by selecting a total of 7 conditions, and each condition induced a change in radiation amount in a single condition (42%) and two steps (4 treatments) and three steps (2 treatments). The speed of the air flow in the device was fixed at 60 m/s, and the run time was changed to 30, 60, and 90 minutes. The average dry matter (DM) content was 82.84%. The DM content was 59.94 and 76.91%, respectively, in drying conditions 1 and 3, which were not suitable for hay. In terms of drying rate, it was significantly higher than 80% in the 5, 6 and 7 treatment, and power consumption was slightly high with an average of 5.7 kw/h. As for the feed value according to each drying condition, the crude protein (CP) content increased as the drying time increased, and there was no significant difference between treatments in ADF, NDF, IVDMD and TDN content. In terms of RFV, treatment 1, which is a single condition, was significantly lower than the complex condition. Through the above results, it was determined that the drying conditions 4 and 5 were the most advantageous when considering the drying speed, power consumption, and quality.

Effects of different levels of crude protein and protease on nitrogen utilization, nutrient digestibility, and growth performance in growing pigs

  • Kim, Yong Ju;Kim, Tae Heon;Song, Min Ho;An, Ji Seon;Yun, Won;Lee, Ji Hwan;Oh, Han Jin;Lee, Jun Soeng;Kim, Gok Mi;Kim, Hyeun Bum;Cho, Jin Ho
    • Journal of Animal Science and Technology
    • /
    • v.62 no.5
    • /
    • pp.659-667
    • /
    • 2020
  • This study was conducted to evaluate the effects of different levels of crude protein (CP) and protease on nitrogen (N) utilization, nutrient digestibility, and growth performance in growing pigs. A total of six crossbred ([Landrace × Yorkshire] × Duroc) barrows were individually accepted in 1.2 m × 0.7 m × 0.96 m stainless steel metabolism cages. The pigs (average initial body weight of 27.91 ± 1.84 kg) randomly assigned to six diets with six weeks (6 × 6 Latin square design). The experiment was carried out in an environment with a temperature of 23 ± 1.5℃, a relative humidity of 83 ± 2.3% and a wind speed of 0.25 ± 0.03 m/s. The dietary treatments were arranged in a 2 × 3 factorial design with two levels of CP (15.3% or 17.1%) and three levels of protease (0 ppm, 150 ppm, or 300 ppm). The average daily gain and gain to feed ratio (G:F) tended to increase (p = 0.074) with increasing amounts of protease. The low CP level diet reduced (p < 0.050) urinary and fecal N concentrations, the total N excretion in feces, and increased (p < 0.050) N retention. Different protease levels in the diet did not affect (p > 0.05) at N intake, but supplementation of the diets with 300 ppm protease decreased (p < 0.050) the N concentration in urine and feces and tended to increase (p = 0.061) the percentage of N retention retained of the total N intake. The dietary CP level did not affect (p > 0.050) the apparent total tract digestibility (ATTD) of dry matter, digestible energy (DE), and metabolic energy (ME), but diet supplementation with 300 ppm protease showed higher (p < 0.050) ATTD of DE and ME than in the protease-free diet. Therefore, a low protein diet with protease could improve the utilization of nitrogen, thereby reducing the negative effect of N excretion into the environment while maintaining or increasing growth performance compared to a high protein diet.