• 제목/요약/키워드: Feed speed

Search Result 912, Processing Time 0.083 seconds

Vibration Analysis of a Rack and Pinon Typed Feed Drive System for a 5-Head Router Machine (Rack/Pinon 방식의 5-Head 라우터 머신 이송 시스템의 진동해석)

  • Choi, Y.H.;Choi, E.Y.;Jang, S.H.;Ha, J.S.;Cho, Y.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.269-272
    • /
    • 2005
  • In order to prevent a router machine feed drive system from transient operational vibration, this paper presents vibration analysis of a rack and pinion typed feed drive system for a router machine. The feed drive system was mathematically idealized as a 5-degree-of-freedom lumped parameter model. Stiffness parameters of motor-shaft, rack and pinion gears, and machine structure were appropriately considered in the modeling. Computational experiment was carried out to obtain vibrations of the feed drive system during its transient speed operation.

  • PDF

Modeling of Feed Drive System Considering Combined Stiffness with Longitudinal And Twist Direction (볼스크류의 축-비틀림 복합강성을 고려한 이송계 모델링)

  • 이찬홍;박천홍;노승국;이후상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.387-390
    • /
    • 2002
  • In machine tools, the stiffness of feed drive system is very important for high speed and accurate operation. The ball screw driven feed system has small friction, so the longitudinal and twist stiffness are connected directly and affected by each other. As the longitudinal and twist stiffness are participated in total stiffness of feeding system by about ratio of 4:1, the combined stiffness is necessary to compute when stiffness of feed system is estimated. In this paper, calculation of this combined stiffness is derived and applied for an actual ballscrew fled drive system. The static stiffness and 1 st natural frequency of the feed system is measured, and it is proved the difference between estimation and experiment result is less than 6%.

  • PDF

The Optimization of Feed System by the Dynamics of Structure and Responsibility (머시닝센터에서 구조물 진동과 응답성을 고려한 이송계 최적화 연구)

  • 김성현;윤강섭;이만형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.365-369
    • /
    • 2002
  • This paper introduces that the machine tools's feed system optimizes by modeling for simulation and adjusting drive control parameter. The first method is frequency response of speed loop with design parameter by use of MATLAB application, in order that other axis can do equal to bandwidth. The second meted uses various sensor for analyzing machine tools's structure and adjustes jirk limitter.

  • PDF

A Study on the Standard Roughness for SUS440C Internal Diameter Machining Using a CNC Automatic Lathe (CNC 자동선반을 이용한 SUS440C 안지름 가공에 대한 표준 거칠기에 관한 연구)

  • Chul-Woong Choi;Sik-Won Choi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.605-613
    • /
    • 2023
  • The multi-axis combined machining technology has enabled combined machining, which was difficult. However, the reality is that manufacturing costs are rising due to expensive equipment and there is a shortage of machine operation engineers. The purpose of this research is to present the optimum cutting conditions for the surface roughness when processing the inner diameter of SUS440C, which is an egg material, using a CNC automatic lathe. As a result of measuring the surface roughness, dry machining was the best at Ra0.481㎛ at a spindle speed of 4,000rpm, a feed rate of 0.05rev/min, and a cutting depth of 0.3mm. In wet machining, the highest value was Ra0.317 at a spindle speed of 2,000 rpm, a feed rate of 0.05 rev/min, and a cutting depth of 0.2 mm. The lower the feed rate, the better surface roughness appears. It was found that the feed rate had more influence than the number of revolutions and depth of cut.

5-axis Milling Machining Time Estimation based on Machine Characteristics (기계 특성에 근거한 5축 밀링가공 시간의 예측)

  • So, B.S.;Jung, Y.H.;Jeong, H.J.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • In this paper, we present a machining time estimation algorithm for 5-axis high-speed machining. Estimation of machining time plays an important role in process planning and production scheduling of a shop. In contrast to the rapid evolution of machine tools and controllers, machining time calculation is still based on simple algorithms of tool path length divided by input feedrates of NC data, with some additional factors from experience. We propose an algorithm based on 5-axis machine behavior in order to predict machining time more exactly. For this purpose, we first investigated the operational characteristics of 5-axis machines. Then, we defined some dominant factors, including feed angle that is an independent variable for machining speed. With these factors, we have developed a machining time calculation algorithm that has a good accuracy not only in 3-axis machining, but also in 5-axis high-speed machining.

Cutting of Magnetic Cu Ferrite (Cu 페라이트의 절삭가공)

  • Lee, Jae-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.71-77
    • /
    • 1999
  • In this study, Cu ferrite was machined with cermet tool to clarify the machinability. The main conclusions obtained were as follows. The tool wear becomes the smallest at the cutting speed of 90m/min with the depth of cut of 0.2mm. The surface roughness becomes larger with increasing the cutting speed and the chamfer angle. The tool with the chamfer angle of $15{\circ}$ shows the best performance. The surface roughness increases almost proportionally with the increase of the chip size. The tool wear decreases with increasing feed in the depth of cut not more than 0.2mm.

  • PDF

Effect of Cooling Method on Surface Roughness in Turning (선삭가공에서 표면 거칠기에 미치는 냉각방법의 영향)

  • Kim, Yeong-Duck
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.87-93
    • /
    • 2011
  • CNC lathe machining has been widely used for parts machining of vehicles, aircraft, ships, electronics, etc. because cost savings for shortening processing time and increasing productivity are great. In this study, the purpose is to investigate the effect of cooling methods such as oil mist, water-soluble cutting oils on the workpiece surface roughness with the cutting speed, cutting depth, tool nose radius and feed rate of CNC lathe machine as a parameter in the cutting process of the aluminum alloy 2024 which is used a lot recently on aircraft parts. It is found that oil mist is coolant and water-soluble cooled by cutting the experimental conditions, cutting speed and cutting depth without effecting the surface roughness value was constant.

Extraction of Factors Effecting Surface Roughness Using the System of Experiments in the Ultra-precision Mirror Surface Finishing (실험 계획법을 이용한 초정밀 경면 연마 가공에서 표면 거칠기에 영향을 미치는 인자의 검출)

  • 배명일;김홍배;김기수;남궁석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.53-60
    • /
    • 1998
  • In this study, it is experimented to find factors effecting surface roughness using the system of experiments. in the mirror surface finishing system. (1) The film feed and oscillation frequency in $40{\mu}m$ abrasive film, grinding speed in $30{\mu}m$, and machining time in $15{\mu}m$15 are the main factors effecting the surface roughness. (2) Applying the optimal finishing condition to $40{\mu}m$, $30{\mu}m$, $15{\mu}m$ abrasive finishing film in sequence, it is possible to obtian about Ra 10 nm surface roughness on SM45C workpiece. (3) Application of the system of experments to the micro abrasive grain film finishing was very effective method in the extraction of main factor and optimal condition.

  • PDF

High performance speed control of induction motor using load torque observer (부하 토오크 관측기를 이용한 유도전동기의 고성능 속도제어)

  • 이성근;임영배;노창주;김윤식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.2
    • /
    • pp.186-194
    • /
    • 1997
  • In this thesis, a new speed control algorithm based on the load torque observer theory is pro¬posed for the high performance speed control of a voltage source inverter to drive a 3 - phase induction motor. The proposed system becomes robust against disturbances using a feed -- for¬ward control of the load torque estimated at load torque observer. Computer simulation and experimental works using the proposed control confirm that transient response for the varia¬tion ofload torque becomes improved, compared with the conventional PI control method.

  • PDF