• Title/Summary/Keyword: Feed main

Search Result 522, Processing Time 0.027 seconds

Milling Characteristics of Vertical Small Scale Milling Machine for the Rough Rice -Optimum design conditions of main spindle speed, ceramic coating length of roller and feed screw pitch- (수직형 소형정미기의 벼 도정 특성 -주축회전수, 롤러의 세라믹코팅길이, 이송스크루 피치의 최적 설계조건에 대하여-)

  • 연광석;한충수;조성찬
    • Journal of Biosystems Engineering
    • /
    • v.26 no.2
    • /
    • pp.177-188
    • /
    • 2001
  • This research was carried out to examine the optimum design conditions of a vertical small-scale milling machine where the rough rice is processed directly into the white rice in one pass. Effects of the main spindle speed, feed screw pitch and ceramic coating length of the roller on various milling characteristics such as white rice processing capacity, electric energy consumption, rice temperature increase, broken rice ratio, moisture reduction, outlet force and crack ratio increase were studied. The results are as follows. 1. The maximum white rice processing capacity and the lowest crack ratio increase, were obtained from a machine with specification: main spindle speed of 970rpm having a feed screw pitch of 19㎜. 2. The minimum electric energy consumption was obtained with the main spindle speeds of 900 and 970rpm respectively having a feed screw pitch of 19㎜. 3. The rice temperature was increased as the feed screw pitch decreased and the main spindle speed increased. 4. Broken rice ratio was relatively low with the range of 0.8∼1.3%. 5. Moisture content loss was with the range of 0.05∼0.4%. 6. The highest outlet force was 0.72kg$\_$f/ with 900rpm of the main spindle speed and 19㎜ of the feed screw pitch and the lowest outlet force was 0.18∼0.34kg$\_$f/ with 970rpm of the main spindle speed and 16㎜ of the feed screw pitch. 7. The optimum design conditions for the vertical small-scale milling machine were obtained at 970rpm of the main spindle speed, 19㎜ of the feed screw pitch and 20㎜ of the ceramics coating length.

  • PDF

Development of Farm Size Dairy Feedmill System in Korea(II) -Development of the TMR Main Center- (우리나라의 낙농단지규모에 알맞는 사료가공시설의 모델개발(II) -TMR 지원시설의 모델 개발-)

  • Kim, T.W.;Park, K.K.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.4
    • /
    • pp.343-357
    • /
    • 1994
  • Current commercial dairy feed has various problems in low feed productivity, inadequate formulation and higher feeding cost due to excessive capital investment and non-specialized system for the end product. To solve those problems, 6 TMR terminal models were developed in this study. The developed TMR terminal system consists of TMR terminal, TMR main center and combined system linked TMR terminal and TMR main center. 15 TMR main center models were developed to support 10, 20, 30, 40, 50 TMR terminal(30 ton/day basis) by 3 different types, and evaluated for capital investment and operation cost by the analysis of the newly developed computer program. Optimum model size is analyzed and suggested for each model. Followings are summary of this study : 1. The capital investment costs of TMR main centers were 1,600 to 3,800 million won for type 1, 2,200 to 4,500 million won for type 2 and 2,200 to 4,800 million won for type 3. Also model MACE30 or bigger were justified as the economical models. 2. The feed production costs of TMR main center models were 3,166 to 4,824 won/ton for type 1, 3,816 to 6,182 won/ton for type 2 and 3,990 to 6,263 won/ton for type 3. So feed production cost range was 3,166 to 6,263 won/ton. 3. The bigger production capacity, the less TMR main center production cost. The feed production cost of the biggest model MACE50 was 62~65% of smallest model MACE10.

  • PDF

Experience in Visual Testing of the Main Feed Water Piping Weld for Hanul Unit 3 (한울 3호기 주급수 배관 용접부 육안검사 경험)

  • Yoon, Byung Sik;Moon, Gyoon Young;Kim, Yong Sik
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.74-78
    • /
    • 2015
  • Nuclear power plant steam generator that is one of the main component has several thousands of thin tubes. And the steam generator tube is subject to damage because of the severe operation conditions such as the high temperature and pressure. Therefore periodic inspections are conducted to ensure the integrity of steam generator component. Hanul unit 3 also has been inspected in accordance with in-service inspection program and is scheduled to be replaced for exceeding the plugging rate which was recommended by manufacturer. During the steam generator replacement activity, we found several clustered porosity on inner surface of main feed water pipe. Additionally crack-like indications were found at weld interface between base material and weld of main feed water pipe. This paper describes the field experience and visual testing results for inner surface of main feed water pipes. The destructive test result had shown that these indications were porosities which were caused by manufacturing process not by operation service.

Effects of Aluminum Sulfate and Protein Levels on Broiler Performance

  • Park, I. H.;K. H. Nahm
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2002.11a
    • /
    • pp.103-105
    • /
    • 2002
  • This study was conducted to determine how broiler performance with the level of crude protein(23 CP%, 21 CP% and 19 CP%) can be changed and affected, adding Alum(Al$_{2}$(SO$_{4}$)$_{3}$ㆍ14H$_{2}$O) and no Alum in litter(two ALUM levels and 3 Protein levels with 2$\times$3 factorial design). Alum was added as a top dressing to the litter at a rate of 200g ALUM / kg of rice bran. With the exception of the protein levels for feed :gain(P〈 0.05), there were no significant differences in feed intake, weight gain and feed :gain of chicks. For ammonia gas emission, both the main effects of Alum and protein(P〈 0.01 and 0.05) at 3weeks and interaction between Alum and protein(P〈 0.05), the main effect of Alum(P〈 0.01) at 6weeks did affected them. In litter excluded the main effects of Alum(P〈 0.05), there was a significant difference among N contents ranged from pH to the rate of C: Organic-N(P〈 0.01).

  • PDF

A Study of the Feature Classification and the Predictive Model of Main Feed-Water Flow for Turbine Cycle (주급수 유량의 형상 분류 및 추정 모델에 대한 연구)

  • Yang, Hac Jin;Kim, Seong Kun;Choi, Kwang Hee
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.263-271
    • /
    • 2014
  • Corrective thermal performance analysis is required for thermal power plants to determine performance status of turbine cycle. We developed classification method for main feed water flow to make precise correction for performance analysis based on ASME (American Society of Mechanical Engineers) PTC (Performance Test Code). The classification is based on feature identification of status of main water flow. Also we developed predictive algorithms for corrected main feed-water through Support Vector Machine (SVM) Model for each classified feature area. The results was compared to estimations using Neural Network(NN) and Kernel Regression(KR). The feature classification and predictive model of main feed-water flow provides more practical methods for corrective thermal performance analysis of turbine cycle.

Numerical Analysis of KSR-III Main Propulsion System Feedlines (KSR-III 추진기관 추진제 공급배관 수치해석)

  • Cho, In-Hyun;Oh, Seung-Hyub;Kang, Sun-Il;Kim, Yong-Wook
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.276-281
    • /
    • 2001
  • The KSR-III Main Propulsion System configuration of the liquid oxygen (LOX) feed line is analyzed. This feed line includes a tighter radius and cavitation venturi for flow mass flow-rate passive control. There were concerns that these configurations might generate a great flow distortion at the engine interface. Also both the pressure drop at the feed line and any presence of separation area are a great concern according to the propellant flow. To resolve these issues, a computational fluid dynamic analysis was conducted to determine the flow field in the LOX feed lines.

  • PDF

A Study of the Valid Model(Kernel Regression) of Main Feed-Water for Turbine Cycle (주급수 유량의 유효 모델(커널 회귀)에 대한 연구)

  • Yang, Hac-Jin;Kim, Seong-Kun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.663-670
    • /
    • 2019
  • Corrective thermal performance analysis is required for power plants' turbine cycles to determine the performance status of the cycle and improve the economic operation of the power plant. We developed a sectional classification method for the main feed-water flow to make precise corrections for the performance analysis based on the Performance Test Code (PTC) of the American Society of Mechanical Engineers (ASME). The method was developed for the estimation of the turbine cycle performance in a classified section. The classification is based on feature identification of the correlation status of the main feed-water flow measurements. We also developed predictive algorithms for the corrected main feed-water through a Kernel Regression (KR) model for each classified feature area. The method was compared with estimation using an Artificial Neural Network (ANN). The feature classification and predictive model provided more practical and reliable methods for the corrective thermal performance analysis of a turbine cycle.

Comparative Study on 220V AC Feed System and 300V DC Feed System for Internet Data Centers

  • Kim, Hyo-Sung
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.157-163
    • /
    • 2012
  • Internet Data Centers (IDCs), which are essential facilities in the modern IT industry, typically have scores of MW of concentrated electric loads. The provision of an Uninterruptible Power Supply (UPS) is necessary for the power feed system of IDCs owing to the need for stable power. Thus, conventional IDC AC power feed systems have three cascaded power conversion stages, (AC-DC), (DC-AC), and (AC-DC), resulting in a very low conversion efficiency. In comparison, DC power feed systems require only a single power conversion stage (AC-DC) to supply AC main power to DC server loads, resulting in comparatively high conversion efficiency and reliability [4-11]. This paper compares the efficiencies of a 220V AC power feed system with those of a 300V DC power feed system under equal load conditions, as established by the Mok-Dong IDC of Korea Telecom Co. Ltd. (KT). Experimental results show that the total operation efficiency of the 300V DC power feed system is approximately 15% higher than that of the 220V AC power feed system.

A Study on the Feed Rate Optimization of a Ball Screw Driven Machine Tool Feed Slide for Minimum Vibrations

  • Choi, Yong-Hyu;Choi, Hoon-Ki;Kim, Soo-Tae;Choi, Eung-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1028-1032
    • /
    • 2004
  • In order to prevent machine tool feed slide system from transient vibrations during operations, machine tool designers usually adopt some typical design solutions; box-in-box typed feed slides, optimizing moving body for minimum weight and dynamic compliance, and so on. Despite all efforts for optimizing design, a feed drive system may experience severe transient vibrations during high-speed operation if its feed rate control is unsuitable. A rough feed rate curve having discontinuity in its acceleration profile causes a serious vibration problem in the feed slides system. This paper presents a feed rate optimization of a ball screw driven machine tool feed slide system for its minimum vibration. Firstly, a ball screw feed drive system was mathematically modeled as a 6-degree-of-freedom lumped parameter system. Next, a feed rate optimization of the system was carried out for minimum vibrations. The main idea of the feed rate optimization is to find out the most appropriate smooth acceleration profile with jerk continuity. A genetic algorithm was used in this feed rate optimization

  • PDF