• Title/Summary/Keyword: Feed force

Search Result 551, Processing Time 0.033 seconds

Off-line Multicritera Optimization of Creep Feed Ceramic Grinding Process

  • Chen Ming-Kuen
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 1998.11a
    • /
    • pp.680-695
    • /
    • 1998
  • The objective of this study is to optimize the responses of the creep feed ceramic grinding process simultaneously by an off-1ine multicriteria optimization methodology. The responses considered as objectives are material removal rate, flexural strength, normal grinding force, workpiece surface roughness and grinder power. Alumina material was ground by the creep feed grinding mode using superabrasive grinding wheels. The process variables optimized for the above objectives include grinding wheel specification, such as bond type, mesh size, and grit concentration, and grinding process parameters, such as depth of cut and feed rate. A weighting method transforms the multi-objective problem into a single-objective programming format and then, by parametric variation of weights, the set of non-dominated optimum solutions are obtained. Finally, the multi-objective optimization methodology was tested by a sensitivity analysis to check the stability of the model.

  • PDF

The Characteristics of High-speed Noncircular Machining Tool Feed Systme using Linear Motor (리니어 모터를 이용한 고속비진원 가공용 공구이송장치의 특성연구)

  • 서준호;민승환;김성식;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.985-990
    • /
    • 1995
  • Recently, the development of high speed and high precision NC-lathe for piston head machining is needed for the complexity and diversity of the piston head shape used in automobile reciprocating engine. THe piston head has many complex shapes in the aspect of fuel economy, such as ovality, profile, double ovality and recess. Among them, for the maching of the over shape of 0.1~1mm the cutting tool should move periodically symchronized with the rotation of piston workpiece. The cutting tool feeed system must have high positioning accuracy for the precise machining, high speed for the fast maching and high dynamic stiffness for the cutting force. The linear brushless DC motor is used for satisfying these coditions. The ballbush guide and supporting guide using turcite is used for the guidance of the feed drive system. Linear encoder, digital servo ampllifer and controller are used for driving the motor. THis paper presents the design and simulation of the new tool feed system for noncircular machining.

  • PDF

Machining Technology of Scroll shape by Feed control method (이송속도 제어를 통한 스크롤 형상의 가공기술)

  • 심상우;강명창;김정석;정현출
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.123-127
    • /
    • 1999
  • This paper suggests the establishment of high-accuracy and high-efficiency machining method of scroll shape workpiece by using the feed control method. The cutting paths for machining the inside and outside surfaces of the scroll-shape workpiece are calculated, and the calculation method of the cutting chip areas based on the coordinate of the base circle is shown. A feed control method is proposed for a constant cutting area and cutting force. By machining test of scroll shape workpiece, The machined accuracy of wrap, tool wear, and surface roughness are evaluated. By this method, Reduction of the machining time and large increase of the efficiency can be expected.

  • PDF

A study on the Effective Cutting Conditions of Cage Motor Rotor(2) (농형회전자의 유효절삭조건에 관한 연구(2))

  • 김희남
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.30-36
    • /
    • 1995
  • This paper proposed on the effective cutting conditions of cage motor rotor by turning. If you want to introduce automatic manufacturing system into the cutting process of cage motor rotor, the selections of effective cutting conditions are necessary. The cutting process of cage motor rotor requires the precision and the out of roundness of cage motor rotor. The surface roughness of cutting face. it is very important factor with effect on the magnetic flux density of cage motor rotor. The purpose of this study is to find out the effects of cutting condition. upon adapting this results, we will improve the production rate in the cutting process of cage motor rotor. As a result, the selection of cutting conditions are important factors to production rate. And these are chosen by the investigations of cutting characters and surface roughness. The experimental result, showed that the increase of cutting speed caused the decrease of cutting force and the high surface integrity. The increase of feed rate and increase of depth of cut caused the increase of cutting force and surface roughness. Thus, the effective cutting conditions of cage motor rotor by turing are cutting speed 291m/min, feed rate 0.10mm/rev, depth of cut 0.05mm.

  • PDF

Effect of temperature and blank holder force on non-isothermal stamp forming of a self-reinforced composite

  • Kalyanasundaram, Shankar;Venkatesan, Sudharshan
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.1
    • /
    • pp.29-43
    • /
    • 2016
  • Composite materials are rapidly gaining popularity as an alternative to metals for structural and load bearing applications in the aerospace, automotive, alternate energy and consumer industries. With the advent of thermoplastic composites and advances in recycling technologies, fully recyclable composites are gaining ground over traditional thermoset composites. Stamp forming as an alternative processing technique for sheet products has proven to be effective in allowing the fast manufacturing rates required for mass production of components. This study investigates the feasibility of using the stamp forming technique for the processing of thermoplastic, recyclable composite materials. The material system used in this study is a self-reinforced polypropylene composite material (Curv$^{(R)}$). The investigation includes a detailed experimental study based on strain measurements using a non-contact optical measurement system in conjunction with stamping equipment to record and measure the formability of the thermoplastic composites in real time. A Design of Experiments (DOE) methodology was adopted to elucidate the effect of process parameters that included blank holder force, pre heat temperature and feed rate on stamp forming. DOE analyses indicate that feed rate had negligible influence on the strain evolution during stamp forming and blank holder force and preheat temperature had significant effect on strain evolution during forming.

Application of Electrical Linear Motors to Machine Tools (전기선형모터의 공작기계에의 적용)

  • 은인웅;정원지;이춘만;최영휴
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.450-453
    • /
    • 2001
  • Linear motor is characterized by its high velocity, high acceleration and good positioning accuracy. In recent years, linear motor is often used as a fast feed mechanism for high-speed machine tools. For the effective application of linear motors to machine tools, many demands on machine conceptions must be fulfilled. In this paper, some important construction concepts such as bending deformation of machine table, frictional force on the linear guidance and thermal behavior of linear motors are presented.

  • PDF

NC 선반의 동적이송오차에 관한 연구

  • 여인완;박철우;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.641-645
    • /
    • 1996
  • Ball screws are used in the feeding system for transmission of driving force. The friction effect between bed and table, which can affect in accuracyin one dimension feeding and describe the dynamic feeding error, could be simplified as a specific model through experiments. The experiments for dynamic feeding errors were performed om tje NC lathe eith a ball screw. The errors in feeding were measured with respect to the variances of feed, spindle speed and motor current for feeding. A rotary encoder and a current sensor were installed with NC lathe.

  • PDF

A combination method of the theory and experiment in determination of cutting force coefficients in ball-end mill processes

  • Kao, Yung-Chou;Nguyen, Nhu-Tung;Chen, Mau-Sheng;Huang, Shyh-Chour
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.233-247
    • /
    • 2015
  • In this paper, the cutting force calculation of ball-end mill processing was modeled mathematically. All derivations of cutting forces were directly based on the tangential, radial, and axial cutting force components. In the developed mathematical model of cutting forces, the relationship of average cutting force and the feed per flute was characterized as a linear function. The cutting force coefficient model was formulated by a function of average cutting force and other parameters such as cutter geometry, cutting conditions, and so on. An experimental method was proposed based on the stable milling condition to estimate the cutting force coefficients for ball-end mill. This method could be applied for each pair of tool and workpiece. The developed cutting force model has been successfully verified experimentally with very promising results.

New Deformation Mechanism in the Forming of Cones by Shear Spinning (전단 스피닝에 의한 원추형상의 성형에 관한 변형 메커니즘)

  • Kim J. H.;Kim Chul
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.375-383
    • /
    • 2005
  • The shear spinning process, where the plastic deformation zone is localized in a very small portion of the workpiece, shows a promise for increasingly broader application to the production of axially symmetric parts. In this paper, the three components of the working force are calculated by a newly proposed deformation model in which the spinning process is understood as shearing deformation after uniaxial yielding by bending, and shear stress, $\tau_{rz}$, becomes k, yield limit in pure shear, in the deformation zone. The tangential force are first calculated and the feed force and the normal force are obtained by the assumption of uniform distribution of roller pressure on the contact surface. The optimum contact area is obtained by minimizing the bending energy required to get the assumed deformation of the blank. The calculated forces are compared with experimental results. A comparison shows that theoretical prediction is reasonably in good agreement with experimental results