• Title/Summary/Keyword: Feed Industry

Search Result 735, Processing Time 0.036 seconds

Forsythia suspensa Extract Has the Potential to Substitute Antibiotic in Broiler Chicken

  • Han, X.;Piao, X.S.;Zhang, H.Y.;Li, P.F.;Yi, J.Q.;Zhang, Q.;Li, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.4
    • /
    • pp.569-576
    • /
    • 2012
  • Two experiments were conducted to investigate the potential for Forsythia suspensa extract (FSE) to substitute for antibiotic in broiler chicken. First, a well-diffusion assay procedure and a 2-fold dilution method were used to determine the bacteriostatic activity of FSE on Escherichia coli K88, staphylococcus aureus, and salmonella was assayed. An inhibitory effect of FSE was observed on the growth of these bacteria. This effect seems to be dose depended, which disappeared after 25.00, 12.50, 1.56 mg/ml. Second, a 42-d trial with 252 broiler chickens (d 1, $38.7{\pm}1.1$ g BW) was conducted to evaluate the effect of dietary supplementation of FSE in broiler chicken. The feeding program consisted of a starter diet from d 1 to 21 and a finisher diet from d 22 to 42. Dietary treatments included were: i) NC: negative control fed a corn-soybean meal based diet; ii) PC: positive control group fed based diet with chlortetracycline; and iii) FC: a test group fed with 100 mg FSE/kg diet. In this study growth performance did not differ among treatments during the starter period. However, dietary supplemental chlortetracycline and FSE increased (p<0.05) average daily gain (ADG), average daily feed intake (ADFI) compared with NC during the finisher and overall phase. Apparent digestibility of calcium on d 21, digestibility of energy and calcium on d 42 of FC was greater (p<0.05) than NC. Moreover, cecal Escherichia coli counts for birds from FC were lower (p<0.05) than NC. Dietary FSE supplementation also improved (p<0.05) villus height and villus height to crypt depth ratios in both duodenum and ileum and decreased (p<0.05) crypt depth in the duodenum. Duodenum villus height and villus height to crypt depth ratio in both duodenum and ileum from the FC group were also greater (p<0.05). Serum growth hormone and IGF-1 were not influenced by different treatments. Apparently, FSE has the potential to substitute for antibiotic in broiler chicken.

Effects of Replacing Corn with Brown Rice or Brown Rice with Enzyme on Growth Performance and Nutrient Digestibility in Growing Pigs

  • Zhang, Defu;Li, Defa;Piao, X.S.;Han, In K.;Yang, Chul J.;Shin, In S.;Dai, J.G.;Li, J.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.9
    • /
    • pp.1334-1340
    • /
    • 2002
  • A 4 week experiment was designed to study the effects of replacing corn with Chinese brown rice or adding different amylase in brown rice basal diet on growth performance and apparent fecal digestibilities of nutrients in growing pigs. One hundred and eight cross-bred pigs (Duroc${\times}$Landrace${\times}$Large White), weighing an average of $18.35{\pm}0.12kg$, were randomly assigned to 6 treatments with 6 replications per treatment. Diet in treatment 1 was corn-soybean meal basal diet, and in treatment 2, 3 and 4, corn was replaced by brown rice on rates of 33.3%, 66.7% and 100% respectively on the basis of treatment 1. And diets in treatment 5 and 6 were similar to treatment 4 except two kinds of amylases, glucoamylase and ${\alpha}$-amylase, were added respectively. The brown rice used in this experiment was husked from one kind of early, long grain, non-glutinous rice (ELGNR, indica rice) in southern China. The results indicated that there was a slight improvement in growth performance of pigs in brown rice treatments (p>0.05). The blood urea nitrogen value in treatment 2 was lower than that in treatment 1 (p<0.05). The differences of apparent fecal digestibilities of most nutrients were significant (p<0.05) except CP. Digestibilities of GE, OM and DM in treatment 4 were the best and digestibility of crude fat in treatment 5 appeared best (p<0.05). Contrast results between treatment 1 and treatment 2 to 4 indicated that the digestibility of GE, OM and DM increased significantly with the replacing rates of brown rice (p<0.05). Contrast results between treatment 4 and 5 indicated that adding glucoamylase in brown rice diet increased growth performance slightly (p>0.05) but not for digestibilities. This experiment shows a positive effect of brown rice on growth performance, especially on nutrient digestibility.

Effects of Adding Super Dose Phytase to the Phosphorus-deficient Diets of Young Pigs on Growth Performance, Bone Quality, Minerals and Amino Acids Digestibilities

  • Zeng, Z.K.;Wang, D.;Piao, X.S.;Li, P.F.;Zhang, H.Y.;Shi, C.X.;Yu, S.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.2
    • /
    • pp.237-246
    • /
    • 2014
  • Two experiments were conducted to evaluate the efficacy of feeding an Escherichia coli (E. coli) derived phytase to pigs fed P deficient, corn-soybean meal diets. In Exp. 1, one hundred and twenty crossbred piglets ($9.53{\pm}0.84$ kg) were allocated to one of five treatments which consisted of four low P diets (0.61% Ca, 0.46% total P and 0.24% non-phytate P) supplemented with 0, 500, 1,000, or 20,000 FTU/kg E. coli phytase as well as a positive control formulated to be adequate in all nutrients (0.77% Ca, 0.62% total P and 0.42% non-phytate P). The treatments were applied to six pens with four pigs per pen for 28 days. In Exp. 2, ten crossbred pigs ($19.66{\pm}1.16$ kg) fitted with ileal T-cannula were used in a nutrient balance study. The pigs were assigned to treatments similar to those used in Exp. 1 in a doubly replicated $5{\pm}4$ incomplete Latin square design (5 diets with 4 periods). Each period consisted of a 5-d adjustment period followed by a 3-d total collection of feces and urine and then a 2-d collection of ileal digesta. Supplementation with phytase linearly increased (p<0.05) weight gain, feed intake, feed efficiency, bone breaking strength and fat-free dry and ash bone weight. There were linear increases (p<0.01) in the apparent ileal digestibility (AID) of DM, GE, CP, Ca, total P, inositol hexaphosphate ($IP_6$) and some AA with increasing dose of E. coli phytase. Pigs fed 20,000 FTU/kg had a greater (p<0.05) AID of IP6 (80% vs 59% or 64%, respectively) than pigs fed diets with 500 or 1,000 FTU/kg phytase. There were linear increases (p<0.05) in the total tract digestibility of Ca, total P, Na, K, Mg, and Zn as well as in the retention of Mg and Zn with increased phytase dose. The retention and utilization of Cu, and the total tract digestibility of CP and Cu quadratic increased (p<0.05) with increased phytase dose. In conclusion, supplementation of 500 FTU of phytase/kg and above effectively hydrolyzed phytate in low-P corn-soybean diets for pigs. In addition, a super dose of phytase (20,000 FTU/kg) hydrolyzed most of the IP6 and consequently further improved mineral use, protein utilization and performance.

Recent advances in feed and nutrition of beef cattle in China - A review

  • Qian Gao;Hu Liu;Zuo Wang;Xinyi Lan;Jishan An;Weijun Shen;Fachun Wan
    • Animal Bioscience
    • /
    • v.36 no.4
    • /
    • pp.529-539
    • /
    • 2023
  • The beef cattle industry in China has advanced remarkably since its reform and opening up; consequently, China has become the world's third-largest beef cattle producer. China is also one of the countries with the most substantial research input and output in the field of beef cattle feed and nutrition. The progress and innovation by China in the research field of beef cattle feed and nutrition have undoubtedly promoted the development of the domestic beef cattle industry. This review summarizes recent advances in feed resource development, nutrient requirements, and nutritional regulation of beef cattle in China. Limitations in current research and perspectives on future work are also discussed.

Determination and prediction of the digestible and metabolizable energy contents of corn germ meal in growing pigs

  • Shi, Meng;Liu, Zhaoyu;Wang, Hongliang;Shi, Chuanxin;Liu, Ling;Wang, Junjun;Li, Defa;Zhang, Shuai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.3
    • /
    • pp.405-412
    • /
    • 2019
  • Objective: This experiment was conducted to determine the chemical composition, digestible energy (DE) and metabolizable energy (ME) contents of corn germ meals (CGM) and to develop equations to predict the corresponding energy contents based on the chemical characteristics of individual CGM. Methods: Sixty-six barrows (initial body weight = $51.3{\pm}4.6kg$) were allotted to 11 diets including a basal diet and 10 CGM test diets in a completely randomized design. In the test diets, CGM was included in replacement of 30% of the energy-providing ingredients in the basal diet, resulting in a final inclusion rate of 29.1%. Each diet was fed to 6 barrows housed in individual metabolism crates for a 7-d acclimation period followed by a 5-d total but separate collection of feces and urine. Results: Considerable variation was observed in acid-hydrolyzed ether extract, ether extract, ash, calcium (Ca) and total phosphorus contents among the CGM samples. On dry matter (DM) basis, the DE and ME contents of the CGM ranged from 10.22 to 15.83 MJ/kg and from 9.94 to 15.43 MJ/kg, respectively. The acid detergent fiber (ADF) contents were negatively correlated with the DE and ME contents of CGM samples. The best-fit prediction equations for the DE and ME values (MJ/kg DM) of the 10 CGM were: DE = 26.85-0.28 insoluble dietary fiber (%)-17.79 Ca (%); ME = 21.05-0.43 ADF (%)-11.40 Ca (%). Conclusion: The chemical compositions of CGM vary depending on sources, particularly in ether extract and Ca. The DE and ME values of CGM can be predicted based on their chemical composition in growing pigs.

A Study on the Effect of Abelmoschus Manihot Jinhuakui Extract on Odor Reduction

  • Gok Mi Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.1
    • /
    • pp.281-286
    • /
    • 2024
  • With the commercialization and full-timeization of the livestock industry, civil complaints continue to increase, and the livestock industry is facing a crisis due to social problems such as odor caused by livestock manure, soil pollution, water pollution, and environmental pollution. In order to increase productivity in livestock farms, the amount of livestock manure generated is increasing due to excessive use of protein feed and high-density breeding environment, and complaints such as odor and water pollution due to management problems are increasing rapidly. Livestock odor has emerged as a serious social problem, and due to growing complaints, conflicts between the Ministry of Agriculture and Forestry and the Ministry of Environment are even causing the livestock industry to lower its status. There is an urgent need for solutions to identify problems in the livestock industry and improve policies. This study aims to develop a " Abelmoschus Manihot Jinhuakui " brand that can improve the intestinal environment of livestock, reduce odors caused by livestock excrement, and improve the productivity of livestock farms in order to improve the increasingly serious odor problem in livestock sites. For Jeju livestock farms, which place more importance on the environment by securing tourists, eco-friendly feed additives were applied to the experiment, the results were derived, and the focus was on solving fundamental problems of odor generation through the development and packaging of feed additive brands. We aim to fundamentally solve the odor problem of domestic livestock farms, secure eco-friendly livestock farms, and contribute to reducing livestock odors and increasing productivity through research results that reduce ammonia levels in each livestock farm.

Effect of L- or DL-methionine Supplementation on Nitrogen Retention, Serum Amino Acid Concentrations and Blood Metabolites Profile in Starter Pigs

  • Tian, Q.Y.;Zeng, Z.K.;Zhang, Y.X.;Long, S.F.;Piao, X.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.5
    • /
    • pp.689-694
    • /
    • 2016
  • The objective of the current study was to evaluate the effect of supplementation of either L-methionine (L-Met) or DL-methionine (DL-Met) to diets of starter pigs on nitrogen (N) balance, metabolism, and serum amino acid profile. Eighteen crossbred ($Duroc{\times}Landrace{\times}Yorkshire$) barrows weighing $15.45{\pm}0.88kg$ were randomly allotted to 1 of 3 diets with 6 pigs per treatment. The diets included a basal diet (Met-deficient diet) containing 0.24% standardized ileal digestibility Met with all other essential nutrients meeting the pig's requirements. The other two diets were produced by supplementing the basal diet with 0.12% DL-Met or L-Met. The experiment lasted for 18 days, consisting of a 13-day adaptation period to the diets followed by a 5-day experimental period. Pigs were fed ad libitum and free access to water throughout the experiment. Results showed that the supplementation of either L-Met or DL-Met improved N retention, and serum methionine concentration, and decreased N excretion compared with basal diet (p<0.01). The N retention of pigs fed diets supplemented with the same inclusion levels of DL-Met or L-Met were not different (p>0.05). In conclusion, on equimolar basis DL-Met and L-Met are equally bioavailable as Met sources for starter pigs.

Additivity of values for phosphorus digestibility in corn, soybean meal, and canola meal in diets fed to growing pigs

  • She, Yue;Wang, Qiuyun;Stein, Hans H.;Liu, Ling;Li, Defa;Zhang, Shuai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1301-1307
    • /
    • 2018
  • Objective: This study was conducted to determine the apparent and standardized total tract digestibility (ATTD and STTD) of phosphorus (P) in corn, soybean meal (SBM), and canola meal (CM), and additivity of values for ATTD and STTD of P in corn, SBM, and CM in diets fed to growing pigs. Methods: Thirty-six growing barrows (initial body weight of $21.6{\pm}1.7kg$) were placed in metabolism crates and allotted to a completely randomized design with 6 diets and 6 pigs per diet. Six diets were formulated using corn, SBM or CM as the sole source of P, or corn and SBM, or corn and CM, or corn, SBM, and CM as the P source in each diet, respectively. Fecal samples were collected for 5 d following a 7 d adaptation period to the diets. Results: Values for ATTD and STTD of P in corn, SBM, and CM in growing pigs were 33.12% and 37.76%, 50.19% and 56.62%, 34.93% and 39.45%, respectively. The ATTD and STTD of P in SBM were greater (p<0.05) than those in corn and CM. However, there were no differences in the ATTD or STTD of P between corn and CM. The determined STTD of P in the mixture of corn and SBM, corn and CM, and corn, SBM, and CM is not different from the calculated STTD values. Conclusion: Values for STTD of P in corn, SBM, and CM are additive in their mixture fed to growing pigs.

Insect meal as a feed ingredient for poultry

  • Elahi, Usman;Xu, Chang-chun;Wang, Jing;Lin, Jing;Wu, Shu-geng;Zhang, Hai-jun;Qi, Guang-hai
    • Animal Bioscience
    • /
    • v.35 no.2_spc
    • /
    • pp.332-346
    • /
    • 2022
  • Shortage of protein feed resources is the major challenge to the world farm animal industry. Insects are known as an alternative protein source for poultry. A wide range of insects are available for use in poultry diets. Insect larvae thrive in manure, and organic waste, and produce antimicrobial peptides to protect themselves from microbial infections, and additionally these peptides might also be functional in poultry feed. The feed containing antimicrobial peptides can improve the growth performance, nutrient digestibility, intestinal health, and immune function in poultry. Insect meal contains a higher amount of essential amino acids compared to conventional feedstuffs. Black soldier fly, mealworm, housefly, cricket/Grasshopper/Locust (Orthoptera), silkworm, and earthworm are the commonly used insect meals in broiler and laying hen diets. This paper summarizes the nutrient profiles of the insect meals and reviews their efficacy when included in poultry diets. Due to the differences in insect meal products, and breeds of poultry, inconsistent results were noticed among studies. The main challenge for proper utilization, and the promising prospect of insect meal in poultry diet are also addressed in the paper. To fully exploit insect meal as an alternative protein resource, and exert their functional effects, modes of action need to be understood. With the emergence of more accurate and reliable studies, insect meals will undoubtedly play more important role in poultry feed industry.

The Effect of Lysine to Protein Ratio on Growth Performance and Efficiency of Nitrogen Utilization in Pigs

  • Li, Defa;Xi, Pengbin;Wang, Junxun;Wang, Jitan;Ren, Jiping;Kang, Yufan;Thacker, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.9
    • /
    • pp.1282-1289
    • /
    • 2001
  • One feeding trial and two metabolic trials were conducted to investigate the effects of lysine to protein ratio in practical swine diets on growth performance and efficiency of nitrogen retention and utilization in different growing phases. In Trial one (the feeding trial), 90 mixed sex pigs weighing $9.1{\pm}1.4kg$ (Duroc ${\times}$ Landrance ${\times}$ Beijing Black) were used to study the effects of concentrations of 5.2, 5.3, 5.8, 6.4 and 7.2 g lysine/100 g CP in diets containing 1.2% lysine on growth performance and serum urea nitrogen. The results showed that feed conversion efficiency and economic efficiency were best for pigs fed the diet containing the lysine concentration of 5.8 g /100 g crude protein. Serum urea nitrogen concentration decreased linearly (p=0.0009) and serum free lysine content increased linearly (p=0.0017) as the lysine to protein ratio in diets increased from 5.2 to 7.2 g/100 g. In Trials two and three (the metabolic trials), five growing barrows (Duroc ${\times}$ Landrance ${\times}$ Beijing black), with initial body weights of approximately $26{\pm}2.4kg$ and $56.3{\pm}3.5kg$, respectively, were allotted to five dietary treatments according to a $5{\times}5$ Latin square design. Trial two contained 5.2, 5.7, 6.1, 6.7 and 6.8 g lysine/100 g CP treatments. Trial three contained 4.6, 5.0, 5.6, 6.1 and 6.6 g lysine/100 g CP treatments. The results showed that nitrogen retention in growing pigs decreased linearly (p=0.0011 in Trial two; p=0.0099 in Trial three) as the lysine to protein ratio in diets increased. The ratio of lysine to protein in diets resulting in maximum nitrogen retention was 5.2 g/100 g and 5.0 g/100 g in Trial two and Trial three, respectively. In Trial two, apparent biological value and gross nitrogen efficiency increased linearly (p=0.0135 and p=0.0192, respectively) as the lysine to protein ratio increased from 5.2 to 6.8 g lysine/100 g CP. In summary, we concluded that the optimal Lysine to Protein Ratios for 8-20 kg and 20-80 kg pigs were 5.8 g/100 g and 5.0 to 5.2 g/100 g, respectively.